A study by the University of Tampere in Finland used protein profiling to find new prostate cancer mechanisms that are not shown by aberrations at the genomic level. Several new potential biomarkers of prostate cancer were also found. Genes that affect prostate cancer evolution have been studied for a long time. However, changes in the protein levels are not well known. The Center for Prostate Cancer Research and the Center for Proteomics and Personalized Medicine at the University of Tampere cooperated to profile the protein expression of prostate cancer by using mass spectrometry for the first time. The researchers compared protein expression to genomic and messenger RNAs in the same samples. The result was that the changes in gene copy numbers and DNA methylation largely explain messenger RNA expression but not the changes on the protein level. The association between messenger RNA expression and protein levels was also weak. The study thus uncovered such mechanisms of prostate cancer that are not indicated by the alterations at the genomic level. “In particular, changes in the citric acid cycle emerged in our analyses,” Adjunct Professor Leena Latonen says. “The results enable exploring the significance of these changes," Latonen continues. In addition to the disease mechanisms, protein profiling revealed several potential new biomarkers. According to Professor Tapio Visakorpi, biomarkers able to recognize the aggressive forms of prostate cancer would be especially useful. That is one of the aspects on which the researchers will focus next. “Discovering these protein biomarkers was enabled by the long-term interdisciplinary work of the research groups on the Kauppi campus of the University of Tampere,” says Professor Hannu Uusitalo, Director of the Center for Proteomics and Personalized Medicine. University of Tamperewww.uta.fi/en/news/story/proteins-reveal-new-mechanisms-prostate-cancer
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:47Proteins reveal new mechanisms in prostate cancer
A pioneering study has found that patients with Parkinson’s disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area. Experts at Newcastle and Sussex universities also revealed that surviving brain cells in the brainstem have more copies of mitochondrial DNA and this has not been identified before. The study’s deeper understanding into Parkinson’s disease suggests a new target for therapies for patients with the debilitating condition. Researchers say their findings are “surprising” as the results differ from what has been seen in studies of brain regions that harbour other brain cell-types. Dr Joanna Elson, a mitochondrial geneticist at Newcastle University, said: “Our study is a major step forwards in gaining an enhanced insight into the serious condition. Research shows that in Parkinson’s disease a brainstem region called the pedunculopontine nucleus (PPN) develops changes in DNA found in mitochondria – the batteries of the cell – as they produce and store energy that cells can use. This study looked at cholinergic neurons that are responsible for producing the brain chemical acetylcholine, which is released by cholinergic nerve cells to send signals from one neuron to another. Death of these cells in the PPN is believed to be the cause of some of the symptoms of Parkinson’s disease, such as problems with attention, walking and posture. Identifying changes in the mitochondrial DNA in PPN cholinergic neurons has the potential to allow the development of more effective treatments targeted to specific cell-types. The PPN is an understudied part of the brain and researchers used post-mortem tissue from the Newcastle Brain Tissue Resource, based at Newcastle University, to isolate single neurons for in-depth analysis. Dr Ilse Pienaar, a neuroscientist at Sussex University, said: “At present, treatments are aimed at the whole brain of patient’s with Parkinson’s disease. “Only by understanding the complexities of what happens in specific cell-types found in specific areas of the brain during this disease can targeted treatments be produced. “We believe that not only would cell-specific targeted treatments be more effective, but they would also be associated with fewer side-effects.” The PPN was of interest because, in previous studies, patients with Parkinson’s disease displayed lower levels of mitochondrial DNA (mtDNA) in remaining dopaminergic neurons. This study showed that mtDNA levels are higher in the surviving cholinergic neurons of the brainstem, but with both cell-types that undergo profound degeneration during Parkinson’s disease. The finding identifies how vulnerable cell groups react and respond differently to the accumulation of mitochondrial DNA damage seen in the disease, highlighting the need for cell-specific treatments. Newcastle Universitywww.ncl.ac.uk/press/articles/latest/2018/01/parkinsonsdiseaseresearch/
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:53New brainstem changes identified in Parkinson’s disease
Two patients with mycosis fungoides (MF) can appear to have identical diseases upon first diagnosis but can have radically different outcomes. MF in an unusual cancer of the T lymphocyte that begins in the skin rather than in the lymph nodes, with the first sign often being a rash. Most patients with MF, the most common type of cutaneous T cell lymphoma (CTCL), have a very slow-growing disease and often have normal life expectancies. But a subset of patients will develop an aggressive, deadly form of the disease that can spread throughout the skin and beyond, becoming untreatable. If identified early, patients with this aggressive form of MF may be eligible for a stem cell transplant to cure the disease, but once MF progresses and becomes treatment resistant, it is nearly impossible to achieve the complete remission required for a successful stem cell transplant. A tool to accurately determine which early-stage patients are at risk of dying from MF and which patients are likely to only require conventional therapy is desperately needed. Investigators from Brigham and Women’s Hospital have found that next-generation, high-throughput sequencing of a specific gene (T-cell receptor beta or TCRB) is a stronger predictor of which early-stage patients will develop aggressive, progressive MF than any other established factor. “We are excited to bring precision medicine to the management of MF patients,” said senior author Thomas Kupper, MD, chair of the BWH Department of Dermatology. “While more work needs to be done, we think this approach has the potential to prospectively identify a subgroup of patients who are destined to develop aggressive, life-threatening disease, and treat them in a more aggressive fashion with the intent to better manage, and ideally cure, their cancer.”
Brigham and Women’s Hospitalwww.brighamandwomens.org/about-bwh/newsroom/press-releases-detail?id=3009
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:42New tool predicts deadly form of rare cancer
Research from the University of Liverpool identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range of common and rare conditions including asthma, and chronic obstructive pulmonary disease (COPD). Corticosteroids are very effective in the treatment of asthma and COPD, with more than 20 million prescriptions issued in the UK annually. Unfortunately, corticosteroids can also cause side effects, one of which is adrenal suppression, seen in up to 1/3 of people tested. People with this condition do not make enough cortisol. Cortisol helps the body respond to stress, recover from infections and regulate blood pressure and metabolism. Adrenal suppression can be very difficult to diagnose, as it can present with a spectrum of symptoms from non-specific symptoms such as tiredness, to serious illness and death. The majority of patients do not develop adrenal suppression, and the reasons why some do, and while other don’t, despite using similar doses of corticosteroids were not previously understood. In researchers from the University’s Institute of Translational Medicine, led by Professor Sir Munir Pirmohamed, conducted a genome-wide association study (GWAS) to pinpoint the genes responsible for increasing the risk of a person developing adrenal suppression. This method searches for single nucleotide polymorphisms (SNPs). Each person carries about three million SNPs, but if a particular SNP occurs more frequently in people with a particular condition than in people without the condition, it can pinpoint the underlying reason for the difference. The researchers identified two groups of children with asthma, and one group of adults with chronic obstructive pulmonary disease (COPD), all of whom used inhaled corticosteroid medications. Each patient’s adrenal function was tested. This is the largest published cohort of children ever tested for adrenal suppression (580 children in total). Individuals who had a particular variation in a specific gene (platelet derived growth factor D; PDGFD) had a markedly increased risk of adrenal suppression, both in the children with asthma and adults with COPD. This risk increased if the patient had two copies of the variation (one from their mother, one from their father). Children with two copies of the high risk variation in PDGFD were nearly six times more likely to develop adrenal suppression than children with no copies. University of Liverpoolnews.liverpool.ac.uk/2018/03/16/genetic-variant-discovery-to-help-asthma-sufferers/
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:49Genetic variant discovery to help asthma sufferers
A large-scale international study led by the University of Exeter Medical School has discovered new genes linked to parents’ lifespan – which could one day be targeted to help prolong human life. How long we live is determined by a range of factors including our lifestyle and how well we treat factors including blood pressure and cholesterol from midlife. However, genetics, and how long our parental relatives lived, also plays a role. Now, the number of genes we know influence lifespan has expanded, potentially paving the way to new therapeutic targets to prolong life. The study, funded by the Medical Research Council and conducted in collaboration with a number of US universities, undertook a genome-wide search for variants influencing how long participants’ parents lived. The team studied 389,166 volunteers who took part in the UK Biobank, with confirmation in the US Health and Retirement Study and the Wisconsin Longitudinal Study. The DNA samples from the volunteers carry the genetics of their biological parents, so provide a practical way of studying exceptionally long lifespans. Eight genetic variants had already been linked for lifespan, mainly involved in heart disease and dementia. The latest study has expanded this to 25 genes in all, with some specific to mothers’ or fathers’ lifespan separately. Dr Luke Pilling, who undertook most of analyses said: “We have identified new pathways that contribute to survival, as well as confirming others. These targets, including inflammatory and cardiovascular pathways, offer potentially modifiable targets to reduce risk of an earlier death and improve health.” Genes involved in senescence, the ‘frozen’ state that cells enter into after being damaged, played an important role in longevity. Drugs targeting senescence have already been shown to extend life in laboratory animals. Genes related to inflammation and auto-immunity-related genes were also prominent, opening up the possibility that precision anti-inflammatory treatments may one day be helpful in extending life. The results confirm that many genetic variants combine to influence human lifespan: no single gene variant was found to be responsible. The study found evidence to suggest that the genetic variants for average lifespan also influence exceptionally long life expectancy. A genetic risk score combining the top ten variants was statistically associated with parents being centenarians.
Exeter Universityhttps://tinyurl.com/yakjsfoj
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:56Parental lifespan genes could hold clue to longer life
Beckman Coulter has announced its exclusive sponsorship of the ESCAVO Sepsis Clinical Guide (Sepsis app), a point-of-care medical reference mobile application for healthcare professionals who manage septic patients in acute-care settings. Beckman Coulter’s sponsorship of the Sepsis app ensures this important tool will remain free for all users and that content will continue to be maintained and updated using the latest clinical practice standards. Sepsis is a life-threatening condition that requires prompt recognition and treatment. Delayed treatment can rapidly cause cardiovascular collapse, tissue damage, organ failure and death. More than a million people are diagnosed with sepsis each year in the United States alone; the dangerous condition causes 250,000 deaths. Approximately 665,000 adults and 100,000 children visit the emergency department with sepsis-related symptoms. Patients presenting with sepsis can be in grave danger when encountering long emergency room wait times or a lack of effective or timely screening and triage protocols. “While great strides have been made in standardizing sepsis treatment in recent years, there is still considerable variability in the quality of care among hospitals,” says Daniel Nichita, M.D., founder of ESCAVO and author of the Sepsis Clinical Guide mobile app. “One reason for this is the difficulty of diagnosing this complex disorder whose early symptoms are often very subtle and for which there is no definitive test, but also an uneven use of current clinical practice standards in sepsis care. ESCAVO developed the Sepsis app to put critical information on sepsis management—based on the most current clinical practice guidelines—in the hands of busy clinicians, who may not always have the time to familiarize themselves with current trends. Its content is delivered in a concise, actionable format to allow rapid but effective clinical decision-making at the point of care.” The Sepsis app can benefit all medical professionals; however, it is especially valuable for those working in the emergency room, where sepsis most commonly first presents. Healthcare providers can download the Sepsis Clinical Guide app from Google Play for Android devices, or from the App Store for the iOS platform. To find the app, users can search “sepsis.” The Sepsis Clinical Guide is recognizable by an orange-colored icon, and, as the top-ranked sepsis-related app, it appears first in the search results.
https://tinyurl.com/njp3cswhttps://tinyurl.com/y9exh7kx
Researchers have identified a type of human leukocyte antigen (HLA) that is associated with the skin disease bullous pemphigoid (BP) in diabetic patients administered with DPP-4 inhibitory drugs. DPP-4 inhibitor (DPP-4i) is widely used to treat type 2 diabetes, but increased cases of bullous pemphigoid (BP) have been reported among patients taking the medicine. BP is the most common autoimmune blistering disorder, characterized by itchy reddening of the skin as well as tense blisters over the whole body. Afflicted patients, mostly elderly, suffer from autoimmune attacks on a type of collagen in skin, making it hard to cure and compromising their quality of life. Previously, no risk factor triggering BP in diabetic patients administered with DPP-4i had been identified. BP is classified into two types: inflammatory and non-inflammatory, the latter of which is found more in diabetic patients administered with the drug. The research team, including Dr. Hideyuki Ujiie of Hokkaido University Hospital, examined 30 BP patients administered with DPP-4i, and investigated their symptoms and autoantibodies to group them as inflammatory or noninflammatory. The researchers then analysed human leukocyte antigen (HLA) genes of the 30 patients to identify their white blood cell type since HLA genes are known to be involved in various immune diseases. To compare, the team also analysed the HLA of 72 BP patients who had not been administered with DPP-4i and 61 diabetic patients who were using the drug but not affected by BP. Their findings were compared with the HLA genes of 873 Japanese from the general population. According to the results, 70 percent of the 30 BP patients administered with DPP-4i fell into the non-inflammatory type with less reddening of the skin (erythema). HLA analyses found 86 percent of the non-inflammatory BP patients administered with DPP-4i had an HLA gene called “HLA-DQB1*03:01.” The rate of having the HLA gene was much higher than was detected among the general population (18 percent) and non-BP type-2 diabetic patients administered with DPP-4i (31 percent). Meanwhile, 26 percent of BP patients who were not administered with the drug had the same HLA gene. The findings show HLA-DQB1*03:01 is not linked to ordinary BP nor type-2 diabetes, but is closely associated with the development of BP among DPP-4i takers. “However, as the probability of patients exposed to DPP-4i to develop BP remains unclear, further research investigating a much larger number of cases is needed,” says Hideyuki Ujiie. “Our results suggest people with HLA-DQB1*03:01 have a higher risk of developing BP when exposed to DPP-4i than those without the HLA gene. The gene could serve as a biomarker to help estimate the risk of developing BP when patients are administered with DPP-4i. The mechanism that connects the HLA gene and BP needs to be addressed to help prevent the development of the disease,” Ujiie added.
ScienceDailyhttps://tinyurl.com/y9u48zv3
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:51A risk factor for drug-induced skin disease identified
While the microbiome has gained significant attention for its impact on digestive health in recent years, its effect on lung disease has largely remained unstudied. Dr. Patricia Finn says this is a missed opportunity. “The microbiome is the ecosystem of good and bad bacteria living in the body,” said Finn, the Earl M. Bane Professor of Medicine at the University of Illinois at Chicago. “Because the lungs continuously and automatically draw air, and any number of environmental agents, into the body, the composition and balance of microbes in the lungs may have a profound effect on many respiratory conditions.” New research from Finn and her colleagues in the UIC College of Medicine suggests that the lung microbiome plays a significant role in asthma severity and response to treatment. Asthma is a chronic disease in which lung airways become swollen and narrow, making it difficult for air to move in and out of lungs. Because people with asthma have inflamed airways, they experience a range of symptoms, including shortness of breath, coughing, wheezing and chest tightness. In a group of clinically similar patients with asthma, researchers identified two asthma phenotypes by assessing the microbiome and airway inflammation. The patients were ages 18 to 30 with mild or moderate atopic asthma. “This tells us the microbiome has relevance beyond the gut, and that it is a potential biomarker for asthma,” said Dr. David Perkins, professor of medicine and surgery at UIC, who jointly operates the lab with Finn. These two phenotypes, called asthma phenotype one and two, or AP1 and AP2, are demarcated by the prevalence and dominance of different bacteria in the lung. When compared, patients in the two groups performed differently on pulmonary function tests. AP1 was associated with less severe asthma; it showed decreased T helper cytokines and increased enterococcus bacteria, but normal pulmonary function tests. In contrast, AP2 was associated with increased pro-inflammatory cytokines, increased oral taxa and strep pneumonia bacteria, and decreased pulmonary function tests, or more severe asthma. In both AP1 and AP2, the associations between the composition of the microbiome and specific inflammatory cytokines were decreased after treatment with an inhaled corticosteroid, a common asthma therapy. Researchers say this suggests that ICS may function by dampening responses to microbes. “The data suggest that further study of the microbiome may help to develop more personalized treatment recommendations for patients with asthma,” said Finn, the senior author on the paper. Finn says that asthma research has increasingly focused on the differences between seemingly similar patients, and that this study adds to the growing body of evidence that patients benefit from precision medicine approaches to common chronic diseases, such as asthma. “If we can better understand how the individual’s lung microbiome affects asthma and identify likely microbial culprits, we may get to a point where we can predict and control asthma development and severity by shifting the microbiome early in life,” Finn said. “This could be as simple as diet, probiotics or medication.” University of Illinois – Chicago today.uic.edu/new-asthma-biomarkers-identified-from-lung-bacteria
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:09:01New asthma biomarkers identified from lung bacteria
New findings from the groundbreaking Trial Assigning Individualized Options for Treatment (Rx), or TAILORx trial, show no benefit from chemotherapy for 70 percent of women with the most common type of breast cancer. The study found that for women with hormone receptor (HR)-positive, HER2-negative, axillary lymph node-negative breast cancer, treatment with chemotherapy and hormone therapy after surgery is not more beneficial than treatment with hormone therapy alone. The new data will help inform treatment decisions for many women with early-stage breast cancer. The trial was supported by the National Cancer Institute (NCI), part of the National Institutes of Health, and designed and led by the ECOG-ACRIN Cancer Research Group. “The new results from TAILORx give clinicians high-quality data to inform personalized treatment recommendations for women,” said lead author Joseph A. Sparano, M.D., associate director for clinical research at the Albert Einstein Cancer Center and Montefiore Health System in New York City and vice chair of the ECOG-ACRIN Cancer Research Group. “These data confirm that using a 21-gene expression test to assess the risk of cancer recurrence can spare women unnecessary treatment if the test indicates that chemotherapy is not likely to provide benefit.” TAILORx, a phase 3 clinical trial, opened in 2006 and was designed to provide an evidence-based answer to the question of whether hormone therapy alone is not inferior to hormone therapy plus chemotherapy. The trial used a molecular test (Oncotype DX Breast Recurrence Score) that assesses the expression of 21 genes associated with breast cancer recurrence to assign women with early-stage, HR- positive, HER2-negative, axillary lymph node–negative breast cancer to the most appropriate and effective post-operative treatment. The trial enrolled 10,273 women with this type of breast cancer at 1,182 sites in the United States, Australia, Canada, Ireland, New Zealand, and Peru. When patients enrolled in the trial, their tumours were analysed using the 21-gene expression test and assigned a risk score (on a scale of 0–100) for cancer recurrence. Based on evidence from earlier trials, women in the trial who had a score in the low-risk range (0–10) received hormone therapy only, and those who had a score in the high-risk range (26 and above) were treated with hormone therapy and chemotherapy. Women in the trial who had a score in the intermediate range (11–25) were randomly assigned to receive hormone therapy alone or hormone therapy with adjuvant chemotherapy. The goal was to assess whether women who received hormone therapy alone had outcomes that were as good as those among women who received chemotherapy in addition to hormone therapy. “Until now, we’ve been able to recommend treatment for women with these cancers at high and low risk of recurrence, but women at intermediate risk have been uncertain about the appropriate strategy to take,” said Jeffrey Abrams, M.D., associate director of NCI’s Cancer Therapy Evaluation Program. “These findings, showing no benefit from receiving chemotherapy plus hormone therapy for most patients in this intermediate-risk group, will go a long way to support oncologists and patients in decisions about the best course of treatment.” The researchers found that the primary endpoint of the trial, invasive disease-free survival—the proportion of women who had not died or developed a recurrence or a second primary cancer—was very similar in both groups. Five years after treatment, the rate of invasive disease-free survival was 92.8 percent for those who had hormone therapy alone and 93.1 percent for those who also had chemotherapy. At nine years, the rate was 83.3 percent for those with hormone therapy alone and 84.3 percent for the group that had both therapies. None of these differences were considered statistically significant. The rates of overall survival were also very similar in the two groups. At five years, the overall survival rate was 98.0 percent for those who received hormone therapy alone and 98.1 percent for those who received both therapies, and at nine years the respective overall survival rates were 93.9 percent and 93.8 percent. The researchers also found that women with a score of 0–10 had very low recurrence rates with hormone therapy alone at nine years (3 percent). This confirms similar findings from earlier studies. In addition, they found that women with a score of 26–100 had a distant recurrence rate of 13 percent despite receiving both chemotherapy and hormone therapy. This finding indicates the need to develop more effective therapies for women at high risk of recurrence.
ECOG-ACRIN Cancer Research Group ecog-acrin.org/news-and-info/press-releases/tailorx-trial-finds-most-women-with-early-breast-cancer-do-not-benefit-from-chemotherapy
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:40TAILORx trial finds most women with early breast cancer do not benefit from chemotherapy
Until very recently, Parkinson’s had been thought a disease that starts in the brain, destroying motion centres and resulting in the tremors and loss of movement. New research shows the most common Parkinson’s gene mutation may change how immune cells react to generic infections like colds, which in turn trigger the inflammatory reaction in the brain that causes Parkinson’s. The research offers a new understanding of Parkinson’s disease. “We know that brain cells called microglia cause the inflammation that ultimately destroys the area of the brain responsible for movement in Parkinson’s,” said Richard Smeyne, PhD, Director of the Jefferson Comprehensive Parkinson’s Disease and Movement Disorder Center at the Vickie and Jack Farber Institute for Neuroscience. “But it wasn’t clear how a common inherited mutation was involved in that process, and whether the mutation altered microglia.” Together with Dr. Smeyne, first author Elena Kozina, PhD, looked at the mutant version of the LRRK2 gene (pronounced ‘lark’). Mutations in the LRRK2 gene are the most common cause of inherited Parkinson’s disease and are found in 40 percent of people of North African Arab descent and 18 percent of people of Ashkenazi Jewish descent with Parkinson’s. However there’s been controversy around the exact function of the LRRK2 gene in the brain. “We know that gene mutation is not enough to cause the disease,” said Dr. Kozina, Post-Doctoral student at Jefferson.“We know that twins who both carry the mutation, won’t both necessarily develop Parkinson’s. A second ‘hit’ or initiating event is needed.” Based on his earlier work showing that the flu might increase risk of Parkinson’s disease, Dr. Smeyne decided to investigate whether that second hit came from an infection. Suspecting that the LRRK2 mutations might be acting outside of the brain, the researchers used an agent — the outer shell of bacteria, called lippopolysaccharide (LPS) – that causes an immune reaction. LPS itself does not pass into the brain, nor do the immune cells it activates, which made it ideal for testing whether this second hit was acting directly in the brain. When the researchers gave the bacterial fragments to the mice carrying the two most common LRRK2 gene mutations, the immune reaction became a “cytokine storm,” with inflammatory mediators rising to levels that 3-5 times higher than a normal reaction to LPS. These inflammatory mediators were produced by T and B immune cells expressing the LRRK2 mutation. Despite the fact that LPS did not cross the blood-brain barrier, the researchers showed that the elevated cytokines were able to enter the brain, creating an environment that caused the microglia to activate pathologically and destroy the brain region involved in movement. “Although more tests are needed to prove the link, as well as testing whether the same is true in humans, these findings give us a new way to think about how these mutations could cause Parkinson’s,” said Dr. Smeyne. “Although we can’t treat people with immunosuppressants their whole lives to prevent the disease, if this mechanism is confirmed, it’s possible that other interventions could be effective at reducing the chance of developing the disease.” Thomas Jefferson Universitywww.jefferson.edu/university/news/2018/03/21/Parkinsons_gene_triggers_the_disease_from_outside_brain.html
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:47Parkinson’s gene initiates disease outside of the brain
We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.
Google Analytics Cookies
These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
Other external services
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.
Privacy Beleid
U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.