Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Biomarkers associated with chronic fatigue syndrome severity

, 26 August 2020/in E-News /by 3wmedia

Researchers at the Stanford University School of Medicine have linked chronic fatigue syndrome to variations in 17 immune-system signalling proteins, or cytokines, whose concentrations in the blood correlate with the disease’s severity.
The findings provide evidence that inflammation is a powerful driver of this mysterious condition, whose underpinnings have eluded researchers for 35 years.
“Chronic fatigue syndrome can turn a life of productive activity into one of dependency and desolation,” said Jose Montoya, MD, professor of infectious diseases, who is the study’s lead author. Some spontaneous recoveries occur during the first year, he said, but rarely after the condition has persisted more than five years.
The study’s senior author is Mark Davis, PhD, professor of immunology and microbiology and director of Stanford’s Institute for Immunity, Transplantation and Infection.
“There’s been a great deal of controversy and confusion surrounding myalgic encephalomyelitis (ME) CFS — even whether it is an actual disease,” said Davis. “Our findings show clearly that it’s an inflammatory disease and provide a solid basis for a diagnostic blood test.”
Many, but not all, ME/CFS patients experience flulike symptoms common in inflammation-driven diseases, Montoya said. But because its symptoms are so diffuse —sometimes manifesting as heart problems, sometimes as mental impairment nicknamed “brain fog,” other times as indigestion, diarrhea, constipation, muscle pain, tender lymph nodes and so forth — it often goes undiagnosed, even among patients who’ve visited a half-dozen or more different specialists in an effort to determine what’s wrong with them.
The sporadic effectiveness of antiviral and anti-inflammatory drugs has spurred Montoya to undertake a systematic study to see if the inflammation that’s been a will-o’-the-wisp in those previous searches could be definitively pinned down.
To attack this problem, he called on Davis, who helped create the Human Immune Monitoring Center. Since its inception a decade ago, the centre has served as an engine for large-scale, data-intensive immunological analysis of human blood and tissue samples. Directed by study co-author Holden Maecker, PhD, a professor of microbiology and immunology, the centre is equipped to rapidly assess gene variations and activity levels, frequencies of numerous immune cell types, blood concentrations of scores of immune proteins, activation states of intercellular signalling models, and more on a massive scale.
This approach is akin to being able to look for and find larger patterns — analogous to whole words or sentences — in order to locate a desired paragraph in a lengthy manuscript, rather than just try to locate it by counting the number of times in which the letter A appears in every paragraph.
The scientists analysed blood samples from 192 of Montoya’s patients, as well as from 392 healthy control subjects. The average age of patients and controls was about 50. Patients’ average duration of symptoms was somewhat more than 10 years.
Importantly, the study design took into account patients’ disease severity and duration. The scientists found that some cytokine levels were lower in patients with mild forms of ME/CFS than in the control subjects, but elevated in ME/CFS patients with relatively severe manifestations. Averaging the results for patients versus controls with respect to these measures would have obscured this phenomenon, which Montoya said he thinks may reflect different genetic predispositions, among patients, to progress to mild versus severe disease.
When comparing patients versus control subjects, the researchers found that only two of the 51 cytokines they measured were different. Tumour growth factor beta was higher and resistin was lower in ME/CFS patients. However, the investigators found that the concentrations of 17 of the cytokines tracked disease severity. Thirteen of those 17 cytokines are pro-inflammatory.
TGF-beta is often thought of as an anti-inflammatory rather than a pro-inflammatory cytokine. But it’s known to take on a pro-inflammatory character in some cases, including certain cancers. ME/CFS patients have a higher than normal incidence of lymphoma, and Montoya speculated that TGF-beta’s elevation in ME/CFS patients could turn out to be a link.
One of the cytokines whose levels corresponded to disease severity, leptin, is secreted by fat tissue. Best known as a satiety reporter that tells the brain when somebody’s stomach is full, leptin is also an active pro-inflammatory substance. Generally, leptin is more abundant in women’s blood than in men’s, which could throw light on why more women than men have ME/CFS.

Stanford Medicinehttp://tinyurl.com/y7agngxn

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:10Biomarkers associated with chronic fatigue syndrome severity

Glioblastoma ‘ecosystem’ redefined for more effective immunotherapy trials

, 26 August 2020/in E-News /by 3wmedia

A research team has revealed the intrinsic gene expression patterns of glioblastoma (GBM) tumours, insights that could drive more effective treatments for GBM, the most common and deadly malignant primary brain tumours in adults.
Jackson Laboratory (JAX) Professor Roel Verhaak, Ph.D., is the senior author of a paper showing tumour gene expression patterns distinct from those of the surrounding immune cells, and characterizing the effects of chemotherapy and radiation treatments.
Verhaak was the first author of a 2010 paper that established four subclasses of GBM — proneural, mesenchymal, neural and classical — based on molecular markers found in patient tumours. That paper was widely influential in the glioblastoma research field, observes Verhaak. “However, these four subtypes have not translated into differential treatment strategies. Every glioblastoma patient receives essentially the same treatment. We hope that our latest work will improve understanding of how to optimally stratify patients, another step towards precision medicine and more targeted, effective treatments.”
The cells that surround a tumour are known as its microenvironment, usually consisting of immune cells, supporting cells and other normal cells. Tumours donated to tissue banks consist of a mixture of microenvironment cells and cancer cells.
In the new paper, the research team isolated the intrinsic gene expression of 364 GBM tumours and observed the impact of the standard cancer treatment regimens of temozolomide and radiation on that expression after subtracting out the effects of therapy on the tumour-associated non-cancer cells.
“By separating out the contributions of the microenvironment, we developed a much clearer picture of the ‘ecosystem’ of hundreds of tumours,” Verhaak says. “We determined what types of cells are in the microenvironment and what their contributions are, and also assessed how treatment affects the microenvironment as well as the tumour cells themselves.”
Through this approach, the researchers found that the molecular markers defining the neural subtype of GBM was actually ascribed by the presence of normal neural tissue in the tumour margin, thus not representing a true tumour subtype.
By studying gene expression patterns in glioblastomas after treatment, their analysis also revealed that the presence of macrophages correlates with poorer outcomes for GBM patients receiving radiation therapy, and that tumours with a relatively high number of point mutations have an increased number of positive T cells, indicating they could respond to a kind of immunotherapy known as checkpoint inhibitors.
The resulting gene expression datasets, which are publicly available to researchers, provide comprehensive profiles of glioblastoma characteristics to more accurately guide immunotherapy trials.


Jackson Laboratory
www.jax.org/news-and-insights/2017/july/glioblastoma-ecosystem-redefined

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:17Glioblastoma ‘ecosystem’ redefined for more effective immunotherapy trials

Link between bacterial imbalances and breast cancer

, 26 August 2020/in E-News /by 3wmedia

In a newly published study, Cleveland Clinic researchers have uncovered differences in the bacterial composition of breast tissue of healthy women vs. women with breast cancer. The research team has discovered for the first time that healthy breast tissue contains more of the bacterial species Methylobacterium, a finding which could offer a new perspective in the battle against breast cancer.
Bacteria that live in the body, known as the microbiome, influence many diseases.
Most research has been done on the “gut” microbiome, or bacteria in the digestive tract. Researchers have long suspected that a “microbiome” exists within breast tissue and plays a role in breast cancer but it has not yet been characterized. The research team has taken the first step toward understanding the composition of the bacteria in breast cancer by uncovering distinct microbial differences in healthy and cancerous breast tissue.
“To my knowledge, this is the first study to examine both breast tissue and distant sites of the body for bacterial differences in breast cancer,” said co-senior author Charis Eng, M.D., Ph.D., chair of Cleveland Clinic’s Genomic Medicine Institute and director of the Center for Personalized Genetic Healthcare. “Our hope is to find a biomarker that would help us diagnose breast cancer quickly and easily.  In our wildest dreams, we hope we can use microbiomics right before breast cancer forms and then prevent cancer with probiotics or antibiotics.”
The study examined the tissues of 78 patients who underwent mastectomy for invasive carcinoma or elective cosmetic breast surgery. In addition, they examined oral rinse and urine to determine the bacterial composition of these distant sites in the body.
In addition to the Methylobacterium finding, the team discovered that cancer patients’ urine samples had increased levels of gram-positive bacteria, including Staphylococcus and Actinomyces. Further studies are needed to determine the role these organisms may play in breast cancer.
Co-senior author Stephen Grobymer, M.D., said, “If we can target specific pro-cancer bacteria, we may be able to make the environment less hospitable to cancer and enhance existing treatments. Larger studies are needed but this work is a solid first step in better understanding the significant role of bacterial imbalances in breast cancer.” Dr. Grobmyer is section head of Surgical Oncology and director of Breast Services at Cleveland Clinic.

Cleveland Clinic
newsroom.clevelandclinic.org/2017/10/05/cleveland-clinic-researchers-find-link-between-bacterial-imbalances-and-breast-cancer/

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:06Link between bacterial imbalances and breast cancer

Make way for haemoglobin

, 26 August 2020/in E-News /by 3wmedia

Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is in red blood cells.
In order to make as much room as possible for the oxygen-carrying protein haemoglobin, pretty much everything else inside these precursor red blood cells–nucleus, mitochondria, ribosomes and more–gets purged. Jam-packing red blood cells with haemoglobin is essential. Doing so ensures that all the body’s tissues and organs are well nourished with oxygen to carry on their normal functions.
But how does this cell remodelling take place to begin with?
For more than 20 years, Daniel Finley, professor of cell biology at Harvard Medical School, has been on a quest to unravel the process behind this profound cellular transformation.
Now, thanks to advances in technology and a fortuitous meeting with researchers in a lab at Boston Children’s Hospital, Finley and his collaborators have identified the mechanism behind red blood cell specialization and revealed that it is controlled by an enzyme he first studied in 1995.
During cell specialization, unwanted parts of a generic, immature cell are removed by the proteasome, protein-gobbling strings of molecules, or the cells’ "trash compactors," says study first author Anthony Tuan Nguyen, an HMS MD-PhD student.
The researchers set out to find the mechanism that controls which parts get destroyed and which parts are spared before the precursor red blood cell becomes a full-fledged one.
Finley had a hunch that the process was controlled by an enzyme called UBE2O, which he and colleagues identified in the 1990s. The enzyme marks cell parts for destruction by tagging them with a small protein called ubiquitin. This tagging allows the proteasome to recognize cells destined for destruction. The vast machinery, known as the ubiquitin-proteasome system (UPS), is switched on constantly throughout the body to remove unnecessary proteins and keep cells free of clutter.
Previously, UPS had not been linked to the specialization of red blood cells. However, in his early research on UBE2O, Finley had noticed large amounts of the enzyme present in immature red blood cells. That was a powerful clue. The combination of UBE2O’s pronounced presence and its known function as cellular debris-remover made it a promising candidate for the role of a key regulator of cell specialization. Yet, back when he first came to this realization, Finley had neither the technology nor the funding to analyse red blood cell development at the necessary molecular detail.
"It was the fish that got away," he said.
Twenty years later, the pieces Finley needed to reopen his abandoned investigation fell into place when he met Mark Fleming, HMS professor of pathology at Boston Children’s Hospital. While studying blood cells, Fleming had identified a mutant mouse that lacked the UBE2O enzyme. Knowing that Finley was interested in the enzyme and its possible role in cell specialization, Fleming contacted him.
The researchers observed that mice without the enzyme were anaemic, a marker of red blood cell deficiency. The observation supported the notion that UBE2O may play a role in red blood cell development.
Using a series of tests that relied on large-scale protein analyses not available in earlier decades, the researchers confirmed the enzyme’s role. Their results revealed that immature red blood cells lacking UBE2O retained hundreds of proteins and failed to become specialized.
The researchers also demonstrated that when isolated from immature red blood cells and tested in other cell types, UBE2O still marked the right proteins for destruction, suggesting that the enzyme is the primary regulator of red blood cell specialization.
The researchers have yet to determine whether the mechanism they found in red blood cells controls specialization of other cells as well. Finley says it probably does.
"I think our work calls attention to the complicated processes behind the development of specialized cells, which is seen throughout nature," Finley said.
Because the enzyme plays an important role in the development of red blood cells, the researchers say they hope their work could lead to therapies for certain blood disorders and blood cancers. The present study revealed that, in mice, UBE2O deficiency powerfully suppressed the symptoms of a blood disorder known as beta thalassemia. This aspect of the research is particularly tantalizing to Nguyen, who has a gene mutation linked to the condition.

EurekAlert
www.eurekalert.org/pub_releases/2017-08/hms-mwf081817.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:12Make way for haemoglobin

Tourette Syndrome risk increases in people with genetic copy variations

, 26 August 2020/in E-News /by 3wmedia

An international team that just conducted the largest study of Tourette Syndrome has identified genetic abnormalities that are the first definitive risk genes for the disorder.
Although Tourette has long been thought to have a genetic basis — because the syndrome tends to appear in families — before now no definitive risk genes had been found. The breakthrough came when researchers focused on a relatively new area of genomics research that takes a broader look at the entire genome, rather than searching for a particular gene, says Peristera Paschou, Purdue University associate biology professor.
"Most times we focus on a mutation of a single base pair, which are the building blocks of DNA, and look for a mutation. But in recent years we’ve realized that there is another type of variation of the human genome," Paschou says.
Scientists have been exploring how often short sections of genes are repeated through the entire genome, how these repetitions might vary among individuals, and whether these repetitions, which are called copy number variants, have an effect on health.
"These variations may involve a large part of the DNA sequence and may even include whole genes. We have only very recently begun to understand how copy number variation may relate to disease," she says. "In the case of this research on Tourette Syndrome, we scanned the entire genome, and through physical analysis, we were able to identify where this variation lies.
"We rarely find variants that are associated at such a high level. This is why this is such a big breakthrough."
Dr. Jeremiah Scharf, of the Psychiatric & Neurodevelopmental Genetics Unit in the Massachusetts General Hospital Departments of Psychiatry and Neurology and the Massachusetts General Hospital Center for Genomic Medicine, co-senior author of the report, says this is a significant finding.
"The challenge of recognizing that Tourette Syndrome is not a single gene disorder, and that a stringent statistical certainty is required in order to declare a gene to be significantly associated with it, has been our long-term aim," he says. "We believe that what sets our study apart from prior studies is that the two genes we have identified both surpassed the stringent threshold of ‘genome-wide significance,’ and so, represent the first two definitive Tourette Syndrome susceptibility genes."

Purdue University
www.purdue.edu/newsroom/releases/2017/Q2/tourette-syndrome-risk-increases-in-people-with-genetic-copy-variations.html

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:19Tourette Syndrome risk increases in people with genetic copy variations

Biosensor could help diagnose illnesses directly in serum

, 26 August 2020/in E-News /by 3wmedia

In this age of fast fashion and fast food, people want things immediately. The same holds true when they get sick and want to know what’s wrong. But performing rapid, accurate diagnostics on a serum sample without complex and time-consuming manipulations is a tall order. Now, a team reports that they have developed a biosensor that overcomes these issues.
Field-effect transistor (FET)-based biosensors are ideal for point-of-care diagnostics because they are inexpensive, portable, sensitive and selective. They also provide results quickly and can be mass-produced to meet market demand. These sensors detect the change in an electric field that results from a target compound, such as a protein or DNA, binding to it. But serum has a high ionic strength, or a high concentration of charged ions, that can mask the targets. Previous research has reported use of pre-treatment steps, complex devices, and receptors with different lengths and orientations on the sensor surface, but with limited success. Alexey Tarasov and colleagues wanted to develop a new approach that would make it easier for FETs to be made as point-of-care diagnostic devices for serum analyses.
The researchers developed a FET sensor that included antibody fragments and polyethylene glycol molecules on a gold surface, which they linked to a commercially available transducer. In this configuration, different sensor chips can be swapped out for use with the same transducer. As a proof-of-principle, they tested the sensor with human thyroid-stimulating hormone. The team found that they could detect the hormone at sub-picomolar concentrations, well below the detection limit previously reported with FETs, when testing it at elevated temperatures. They say that the device could be modified to diagnose many conditions and illnesses, and is inexpensive and easy to use.
American Chemical Society http://tinyurl.com/y99pwak6

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:08Biosensor could help diagnose illnesses directly in serum

Scientists map mutation that drives tumours in childhood cancer survivors treated with radiation decades later

, 26 August 2020/in E-News /by 3wmedia

Neuroscientists have uncovered the genetic basis for why many long-term survivors of childhood cancer develop meningiomas, the most common adult brain tumour, decades after their treatment with cranial radiation.
The findings show that radiation causes genetic rearrangements in DNA that result in meningiomas, say co-principal investigators Gelareh Zadeh, neurosurgeon-scientist, Head of Surgical Oncology, and Ken Aldape, neuropathologist-scientist, Director, MacFeeters-Hamilton Neuro-Oncology Research Program, Princess Margaret Cancer Centre, University Health Network.
Dr. Zadeh is an Associate Professor, Division of Neurosurgery, and holds the Wilkins Family Chair in Brain Tumor Research; and Dr. Aldape, Professor, Laboratory Medicine and Pathobiology, both at University of Toronto.
The study compared and contrasted the biology of radiation-induced meningiomas (RIMs) to those that appear sporadically in the general population.
"Radiation-induced meningiomas appear the same on MRI and pathology, feel the same during surgery and look the same under the operating microscope. What’s different is they are more aggressive, tend to recur in multiples and invade the brain, causing significant morbidity and limitations (or impairments) for individuals who survive following childhood radiation," says Dr. Zadeh.
The research team analysed RIMs from patients who had received cranial-spinal radiation as children; the majority of whom (74 per cent) had survived either leukaemia or paediatric brain cancer. The study also showed that RIMs developed regardless of the radiation dose by collaborating with scientists in Germany where low-dose radiation was a common treatment many years ago for scalp ringworm.
"By understanding the biology, the goal is to identify a therapeutic strategy that could be implemented early on after childhood radiation to prevent the formation of these tumours in the first place," says Dr. Zadeh.
Dr. Aldape says: "It is an important clinical problem because it presents a paradoxical dilemma that while cranial-spinal radiation is needed to cure many childhood cancers, an unfortunate consequence is that 10-to-15-years following radiation treatment some survivors develop meningiomas.
"Our research identified a specific rearrangement involving the NF2 gene that causes radiation-induced meningiomas. But there are likely other genetic rearrangements that are occurring as a result of that radiation-induced DNA damage. So one of the next steps is to identify what the radiation is doing to the DNA of the meninges."
He adds: "In addition, identifying the subset of childhood cancer patients who are at highest risk to develop meningioma is critical so that they could be followed closely for early detection and management."

Princess Margaret Cancer Centre, University Health Network
www.uhn.ca/corporate/News/PressReleases/Pages/brain-tumour-scientists-map-mutation-that-drives-tumours-in-childhood-cancer-survivors-treated-with-radiation-decades-earl.aspx

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:15Scientists map mutation that drives tumours in childhood cancer survivors treated with radiation decades later

Stago Group acquires HemoSonics LLC

, 26 August 2020/in E-News /by 3wmedia

The Stago Group recently announced that it has completed the acquisition of HemoSonics LLC, a company specialized in the development of innovative point-of-care testing solutions based in Charlottesville, VA, with facilities in Durham, NC (USA). With the acquisition of the patented SEER technology (Sonic Estimation of Elasticity via Resonance) and its associated Quantra™ Hemostasis Analyser, Stago demonstrates its willingness to develop a point-of-care offering to complete its leadership in hemostasis testing and beyond. This transaction provides Stago with expanded opportunities for future growth and is an important part of the company’s on-going efforts to diversify its portfolio of medical devices in an ever-changing healthcare environment. “This significant step makes us very proud to contribute to the management of healthcare costs and to the improvement of patients outcomes worldwide”, says Lionel Viret, Chairman of the Board. “Stago brings exceptional expertise in the field of Thrombosis and Hemostasis that will greatly advance our efforts to rapidly and effectively deliver a new standard of care for the management of bleeding in the critical care setting” says Timothy Fischer, President and Chief Executing Officer of HemoSonics. Ferghana Partners acted as exclusive financial advisor to HemoSonics for this transaction.
www.stago.com

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:24Stago Group acquires HemoSonics LLC

1 to 10 mutations are needed to drive cancer, scientists find

, 26 August 2020/in E-News /by 3wmedia

For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger Institute and their collaborators adapted a technique from the field of evolution to confirm that, on average, 1 to 10 mutations are needed for cancer to emerge.
The results also show the number of mutations driving cancer varies considerably across different cancer types.
In the study, the team developed an approach to discovering which genes are implicated in cancer evolution and how many mutations in those genes drive cancer. In the future, such approaches could be used in the clinic to identify which few mutations in an individual patient are driving his or her cancer, from amongst the thousands of mutations present.
Over 150 years ago, Charles Darwin described how different species evolve through the process of natural selection. Cancers also develop by natural selection, acting on the mutations that accumulate in the cells of our bodies over time. In this study, scientists applied an evolutionary perspective to quantifying natural selection in 7,664 tumours across 29 different cancers.
One of the striking findings of the study was that mutations are usually well-tolerated by cells in the body. This was surprising because mutations that individuals inherit from their parents are often poorly tolerated, and are generally lost from the human species over time. In the body’s cells, however, as a cancer develops, nearly all mutations persist without impacting on the survival of the cell.
The team also catalogued the main cancer genes responsible for 29 different cancer types. Researchers discovered several new cancer genes and determined how complete the current lists of cancer genes are.
“We have addressed a long-standing question in cancer research that has been debated since the 1950s: how many mutations are needed for a normal cell to turn into a cancer cell? The answer is – a small handful. For example, about four mutations per patient on average drive liver cancers, whereas colorectal cancers typically require 10 or so driver mutations.”
Dr Peter Campbell, lead author on the study, from the Wellcome Trust Sanger Institute
“In the study, we revealed that around half of these key mutations driving cancer occur in genes that are not yet identified as cancer genes. There is already much insight into the most important genes involved in cancer; but there are many more genes yet to be discovered. We will need to bring together even larger numbers of cancers studied by DNA sequencing, into the tens of thousands, to find these elusive genes.”

Sanger Institute
www.sanger.ac.uk/news/view/1-10-mutations-are-needed-drive-cancer-scientists-find

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:031 to 10 mutations are needed to drive cancer, scientists find

Blood test spots tumour-derived DNA in people with early-stage cancer

, 26 August 2020/in E-News /by 3wmedia

In a bid to detect cancers early and in a non-invasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to accurately identify more than half of 138 people with relatively early-stage colorectal, breast, lung and ovarian cancers. The test, the scientists say, is novel in that it can distinguish between DNA shed from tumours and other altered DNA that can be mistaken for cancer biomarkers.
 “This study shows that identifying cancer early using DNA changes in the blood is feasible and that our high accuracy sequencing method is a promising approach to achieve this goal,” says Victor Velculescu, M.D., Ph.D., professor of oncology at the Johns Hopkins Kimmel Cancer Center.
Blood tests for cancer are a growing part of clinical oncology, but they remain in the early stages of development. To find small bits of cancer-derived DNA in the blood of cancer patients, scientists have frequently relied on DNA alterations found in patients’ biopsied tumour samples as guideposts for the genetic mistakes they should be looking for among the masses of DNA circulating in those patients’ blood samples.
To develop a cancer screening test that could be used to screen seemingly healthy people, scientists had to find novel ways to spot DNA alterations that could be lurking in a person’s blood but had not been previously identified.
“The challenge was to develop a blood test that could predict the probable presence of cancer without knowing the genetic mutations present in a person’s tumour,” says Velculescu.
The goal, adds Jillian Phallen, a graduate student at the Johns Hopkins Kimmel Cancer Center who was involved in the research, was to develop a screening test that is highly specific for cancer and accurate enough to detect the cancer when present, while reducing the risk of “false positive” results that often lead to unnecessary over-testing and overtreatments.
The task is notably complicated, says Phallen, by the need to sort between true cancer-derived mutations and genetic alterations that occur in blood cells and as part of normal, inherited variations in DNA.
As blood cells divide, for example, Velculescu says there is a chance these cells will acquire mistakes or mutations. In a small fraction of people, these changes will spur a blood cell to multiply faster than its neighbouring cells, potentially leading to pre-leukemic conditions. However, most of the time, the blood-derived mutations are not cancer-initiating.
His team also ruled out so-called “germline” mutations. While germline mutations are indeed alterations in DNA, they occur as a result of normal variations between individuals, and are not usually linked to particular cancers.
To develop the new test, Velculescu, Phallen and their colleagues obtained blood samples from 200 patients with breast, lung, ovarian and colorectal cancer. The scientists’ blood test screened the patients’ blood samples for mutations within 58 genes widely linked to various cancers.
Overall, the scientists were able to detect 86 of 138 (62 percent) stage I and II cancers.   More specifically, among 42 people with colorectal cancer, the test correctly predicted cancer in half of the eight patients with stage I disease, eight of nine (89 percent) with stage II disease, nine of 10 (90 percent) with stage III and 14 of 15 (93 percent) with stage IV disease. Of 71 people with lung cancer, the scientists’ test identified cancer among 13 of 29 (45 percent) with stage I disease, 23 of 32 (72 percent) with stage II disease, three of four (75 percent) with stage III disease and five of six (83 percent) with stage IV cancer. For 42 patients with ovarian cancer, 16 of 24 (67 percent) with stage I disease were correctly identified, as well as three of four (75 percent) with stage II disease, six of eight (75 percent) with stage III cancer and five of six (83 percent) with stage IV disease. Among 45 breast cancer patients, the test spotted cancer-derived mutations in two of three (67 percent) patients with stage I disease, 17 of 29 (59 percent) with stage II disease and six of 13 (46 percent) with stage III cancers.
They found none of the cancer-derived mutations among blood samples of 44 healthy individuals.
Despite these initial promising results for early detection, the blood test needs to be validated in studies of much larger numbers of people, say the scientists.

John Hopkins Medicinehttp://tinyurl.com/yd8vb763

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:10Blood test spots tumour-derived DNA in people with early-stage cancer
Page 192 of 227«‹190191192193194›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription