Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Study identifies genes linked to better immune response to flu vaccine

, 26 August 2020/in E-News /by 3wmedia

Yale experts and their partners in a national research consortium have identified several genes and gene clusters associated with the immune response to influenza (“flu”) vaccination. The findings point to the prospect of using genetic profiles to predict individual responses to the flu vaccine.
The global impact of influenza is substantial, with seasonal epidemics estimated to result in 3-5 million cases of severe illness, and 250,000 to 500,000 deaths annually worldwide. Vaccination is the best way to protect against flu infection, but the composition of the seasonal vaccine changes from year to year. Moreover, effectiveness of the vaccine varies widely among individuals.
Previous studies, including a study done at Yale, have sought to identify changes in gene expression associated with successful flu vaccination but focused on relatively small numbers of participants. The new study included six different cohorts receiving the flu vaccine from across the country; research centres included Yale, the Baylor Research Institute, Emory University, the Mayo Clinic, and the National Institutes of Health. The size of the cohort — more than 500 individuals — allowed researchers to not only identify genes and gene clusters associated with vaccine response, but also confirm these findings in an independent cohort of participants.
Analysing the data, the research team identified several gene “signatures,” or groups of genes, that were associated with a stronger response to the flu vaccine. The response was determined by increases in antibodies that protect against infection.
We “were able to identify genes at baseline, before vaccination, that would predict how individuals would respond to the vaccine,” said Ruth Montgomery, associate professor of medicine at Yale School of Medicine and a co-author.
The researchers also found that the while the genes were predictive of a robust vaccine response in adults younger than age 35, those same genes did not improve responses in adults over age 60. “Another finding is that genes that contribute to good immune response are different in young and older people,” Montgomery noted.
“Surprisingly, we found that baseline differences, both at the gene and module level, were inversely correlated between young and older participants,” added Steven Kleinstein, associate professor of pathology at Yale School of Medicine and a corresponding author on the study. The reasons for these age differences warrant further study, said the researchers.
The findings offer new insights into the biology of vaccine response. They may also help investigators predict responses in individuals and develop strategies to improve vaccines, or treatments to boost the immune system’s response to vaccination, the researchers noted.

Yale University
news.yale.edu/2017/08/25/study-identifies-genes-linked-better-immune-response-flu-vaccine
 
 

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:12Study identifies genes linked to better immune response to flu vaccine

Rare gene variant discovered to contribute to lower pre-eclampsia risk

, 26 August 2020/in E-News /by 3wmedia

Researchers at the University of Helsinki, in cooperation with two research groups in the United States, have discovered that some Finnish mothers carry rare gene variants that protect them from pre-eclampsia, also known as toxaemia of pregnancy. This is the first time that mothers’ genotypes have been proven to contain factors that protect against pre-eclampsia.
Around 5 per cent of pregnant women get pre-eclampsia, which is one of the most common causes of maternal deaths and premature births. The underlying cause of pre-eclampsia is not yet known in detail, but the disease is known to increase the risk of cardiovascular diseases among mothers and their children later in life. Susceptibility to pre-eclampsia is hereditary: family history of this disease on the mother’s or father’s side increases its risk.
Researchers at the University of Helsinki have studied the effects of mothers’ genetic variations on developing pre-eclampsia. The study was based on the Finnish FINNPEC (Finnish Genetics of Pre-eclampsia Consortium) and FINRISK cohorts and compared samples from more than 600 pre-eclampsia patients and 2,000 non-pre-eclamptic controls.
“We chose candidate genes that were interesting in terms of pre-eclampsia, and studied the variation found in them among patients and controls,” says Inkeri Lokki, who is completing her doctoral dissertation on the subject. “The sFlt-1 protein is known to be linked to pre-eclampsia, and we found two single nucleotide polymorphisms in the gene that codes this protein. Pre-eclampsia is less common among mothers who carry these mutations than it is among other mothers.”
Too high an amount of sFlt-1 protein in the body causes vascular disorders. It is known that the amount of the sFlt-1 protein in the blood of the women who developed pre-eclampsia had increased before they fell ill.
The study also examined Finnish mothers’ health over the longer term, based on the FINRISK material.
“It seems that the women who carry gene variants that protect them from pre-eclampsia were also less likely to develop cardiac failure later in life than other women,” says Lokki.


University of Helsinki
www.helsinki.fi/en/news/rare-gene-variant-discovered-to-contribute-to-lower-risk-of-pre-eclampsia-in-finnish-mothers

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:18Rare gene variant discovered to contribute to lower pre-eclampsia risk

Beckman Coulter highlights the first US IVD test delivering flow cytometric leukemia & lymphoma analysis in the routine clinical lab

, 26 August 2020/in E-News /by 3wmedia

ClearLLab reagents are the first to receive Food and Drug Administration (FDA) clearance (via the De Novo Process) to market them in the US.  They deliver the first preformulated, IVD antibody cocktails for leukemia and lymphoma immunophenotyping in the clinical lab. For clinical laboratories it means they no longer have to develop their own laboratory developed test (LDT), a technically demanding, manual, time-consuming, and potentially error-prone process. Previously, labs would have had to make and validate their own antibody cocktails.  ClearLLab reagents simplify and standardize the process.
 ‘FDA allows marketing of test to aid in the detection of certain leukemias and lymphomas’ with the FDA confirming that the test ‘provides consistent results to aid in the diagnoses of these serious cancers’.  The FDA evaluated data from a multi-site clinical study which compared panel results to alternative detection methods.
Dr Mario Koksch, Vice President and General Manager of Beckman Coulter’s Cytometry Business Unit said: “Flow cytometry is a powerful tool for the detailed and fast analysis of complex populations, with the technique becoming increasingly valuable to the clinical hematology laboratory. “Clearance to market the first IVD L&L reagents in the US has opened the door to the expansion globally of our clinical reagent and instrument portfolio.”  
ClearLLab reagents deliver fast and accurate qualitative identification of various hematolymphoid cell populations by immunophenotyping on the FC500 flow cytometer.  With the reliability of a standardized kit and protocols, the preformulated combinations offer LEAN-focused benefits which reduce manual preparation and validation time, accelerate sample preparation time, improve workflow, streamline lab inventory management and provide confidence in the accuracy and reliability of results.
As Dr Koksch added: “The routine use of ready-to-use ClearLLab reagents delivers greater efficiency and cost savings.  Preformulated antibody combinations enable the lab to avoid the potential errors of manual antibody cocktail preparation, with the reassurance of standardized reporting to international guidelines.”
ClearLLab reagents follow the 2006 Bethesda International Consensus Recommendations on the Flow Cytometric Immunophenotypic Analysis of Hematolymphoid Neoplasia. They are compatible with the World Health Organization (WHO) 2016-revised classification of myeloid neoplasms and acute leukemia.  WHO, in collaboration with the European Association for Hematopathology and the Society for Hematopathology, recently made important changes to the classification of these diseases. These included new criteria for the recognition of some previously described neoplasms as well as clarification and refinement of the defining criteria for others. www.beckman.com

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:07Beckman Coulter highlights the first US IVD test delivering flow cytometric leukemia & lymphoma analysis in the routine clinical lab

Improved analysis of kidney cancer

, 26 August 2020/in E-News /by 3wmedia

Every year, just over 1000 people are diagnosed with kidney cancer in Sweden. The three most common variants are clear cell, papillary and chromophobe renal cancer. Researchers compare the gene expression in tumour cells from a kidney cancer patient with cells from healthy tissue to figure out in which part of the kidney the cancer began and what went wrong in these cells. Now, a research team at Lund University in Sweden has discovered that in the Cancer Genome Atlas database, the gene expression in reference samples from normal tissue varies, depending on where in the kidney the samples happen to have been taken. The analyses can be improved by clarifying which samples correspond to the correct tissue.
The part of the kidney which purifies the blood and generates urine is called the nephron and functions as a kind of tubing system. Each kidney contains around a million nephrons which collectively filter 180 litres of primary urine (waste products, water and salts) every day. This results in 1.5 litres of concentrated liquid, which is excreted through urination.
“Everything is very specifically regulated and the cells have different gene expression and hence properties depending on their location in the tubing.”, explains Håkan Axelson, research team leader and professor of molecular tumour biology.
When a tumour biopsy is taken from a patient and compared with healthy kidney tissue, it serves to map how the various genes are expressed so as to clarify what has gone wrong in the tumour cells.  The Cancer Genome Atlas – an international database containing almost 1000 samples from kidney tumours and healthy tissue – is a tool in this process.
“But when our research team studied the samples from the database, we noticed a great range of gene expressions between normal tissue samples. It emerged that the samples in the Cancer Genome Atlas were taken at different depths in the kidney and therefore contain different types of cells, which means that their gene expressions also vary”, says Håkan Axelson.
The normal reference samples thus contain various types of cells depending on where in the kidney they happen to have been taken. Since the Atlas does not state the location in the kidney the reference sample was collected, the comparison risks being unreliable and sometimes completely incorrect.
“Since the gene expression in the cells varies depending on their location, it is important that the normal samples contained in the database should also be taken from the location corresponding to that of the patient’s tumour”, says David Lindgren, who is the lead author of the study.
As an example, it was previously suspected that clear cell tumours occur in the first part of the nephron, but if these tumour cells are compared with a normal sample taken deeper inside the nephron, the cells will not correspond to the tumour sample. The gene expression is thereby different. Although each patient is unique, the various types of tumours have different specific genetic changes which occur as a consequence of properties in the cell in which the tumour originated.
“It is extremely important to know what characterises the cells in which the tumour occurs. Through better understanding of this interaction, we can increase our understanding of the course of the disease, which could be significant for diagnostics and, in the longer term, also for the choice of treatment”, concludes Håkan Axelson.

Lund University
www.lunduniversity.lu.se/article/improved-analysis-of-kidney-cancer

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:14Improved analysis of kidney cancer

A new test to detect reliably an autoimmune disease

, 26 August 2020/in E-News /by 3wmedia

In autoimmune diseases, the immune system wrongly identifies its "enemy", and produces antibodies that attack the patient’s own cells. One of these diseases, the anti-phospholipid antibody syndrome (APS), is still poorly understood, even though it can have serious consequences. APS is caused by antibodies circulating in the blood plasma that are directed against a protein, which increase the blood’s tendency to form clots. This can lead to a range of vascular accidents, such as venous thromboses, strokes or repeated miscarriages. Although the prevalence of APS is very difficult to assess, it is likely to affect around 0.5% of the general population. Diagnosing the disease is a complicated affair: the test currently used has a number of problems in terms of variability, specificity and sensitivity. This situation, however, is set to change: researchers at the University of Geneva (UNIGE), Switzerland, and the Geneva University Hospitals (HUG) have succeeded in identifying the exact spot where the anti-phospholipid antibodies attach themselves. This means a more accurate and standardized diagnostic test can now be devised– an undeniable improvement for patients.
In people suffering from APS, antibodies called "anti-Β2GP1" attach themselves to elements found on the surface of certain cells, particularly those of the blood vessels and placenta. They bind themselves to receptors located on the cell membrane, generating a signal that produces the pro-inflammatory and pro-thrombotic factors that cause vascular accidents. By identifying the exact location where these antibodies bind, the research team at UNIGE and HUG have been able to clarify how they function. Karim Brandt, a researcher at the UNIGE Faculty of medicine, explains the importance of this discovery: "The current diagnostic tests use the entire protein, which reduces its specificity and leads to standardization issues.
Consequently, two tests are required at an interval of 12 weeks after a thrombotic episode or following one or more miscarriages. Our new test specifically targets this pathogenic antibody, with rapid and more accurate results."

An antibody with a rather special behaviour
The researchers managed to isolate a "motif", which is a small part of the membrane protein. Motifs are recognized by the antibody, which then binds to it, like a key in a lock. In this instance, the key can open several locks, which correspond to the proteins found on the surface of the cells and induce the pathogenic effects. And if the target protein was identified as such, it is because it is the only protein in all the human proteome to have five of these motifs; it has therefore as many potential binding points for the pathogenic antibody.
APS is usually treated with oral anticoagulants such as low-molecular-weight heparin and aspirin, long-term treatments that are not without side effects, and that must be used with caution by pregnant women. Moreover, treatment becomes very burdensome in patients suffering from the most severe form of the disease, called "catastrophic APS". As Karim Brandt is keen to stress, the researchers are also focusing their working in this direction: "Our breakthrough could also give rise to a targeted treatment that would neutralize specific pathogenic antibodies, reducing not just their actions but also the side effects associated with the current treatment. It would involve injecting the protein motif we have identified into a patient’s circulatory system so that it explicitly binds itself to the pathogenic antibody and prevents it from causing harm."
For the time being, the diagnostic test needs to be optimized for prototypes to be developed. To ensure its validity, the researchers will reanalyze hundreds of samples already tested with the old method and compare results.

EurekAlert
www.eurekalert.org/pub_releases/2017-06/udg-ant061417.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:23A new test to detect reliably an autoimmune disease

Mutations in notch gene to role in B cell cancers

, 26 August 2020/in E-News /by 3wmedia

Notch is one of the most frequently mutated genes in chronic lymphocytic leukaemia (CLL), the most common leukaemia in adults in the United States. It is also often mutated in other common B cell tumours, such as mantle cell lymphoma. However, the role of Notch in these cancers has been uncertain. Now, a collaborative effort between investigators at the Perelman School of Medicine at the University of Pennsylvania and the Harvard Medical School provides new insights into how Notch drives the growth of B-cell cancers.
The researchers found that in B cell tumours, mutated overactive versions of the Notch protein directly drive the expression of the Myc gene and many other genes that participate in B cell signalling pathways. Myc is a critical gene in governing cell proliferation and survival, activities that it carries out by regulating the expression of other genes involved in cell metabolism.
B cell signalling pathways are the current targets of several therapies used to treat B cell malignancies such as CLL. “An important translational implication of this research is that we hope that by combining Notch inhibitors with drugs that target B-cell signalling we can better treat these B-cell cancers,” said senior author Warren Pear, MD, PhD, a professor of Pathology and Laboratory Medicine at Penn Medicine. “Although this is true of many transcription factors, it has been difficult to develop therapeutics that directly target the Myc protein, an alternative approach may be to target the proteins that regulate Myc expression.” Notably, multiple Notch inhibitors are in various stages of clinical development as potential cancer therapies.
The mechanism used by Notch to regulate Myc in B cells is distinct from the mechanism used in other cell types, such as T cells, where Notch also regulates Myc. The team found that Notch uses different regulatory switches in the genome, called enhancers, in different cell types. This raises the issue of why evolution would select for this complexity. One reason may be that Myc needs to be under very tight control in each cell. For example, in the mouse model of Notch-induced T-cell leukemia, the Penn group previously found that the difference between inducing a T cell tumor or not is a doubling of Myc transcription by Notch. As Notch appears to use cell type-specific machinery to regulate Myc, it may be possible to target the Notch-Myc signaling path in a way that does not disrupt this path in other cell types.
Another surprising finding was the direct link between Notch and genes involved in other B cell signalling pathways. For example, Notch activates genes involved in B cell receptor signalling, which is an established drug target in these B cell cancers. The challenge now will be to understand what this might mean for treatment of patients with Notch-activated B-cell leukemias and lymphomas. The team plans to test the synergy between Notch and B-cell signaling inhibitors. If they find a relationship, the next step would be to stimulate interest in a clinical trial.


Penn Medicine
www.pennmedicine.org/news/news-releases/2017/october/penn-study-links-mutations-in-notch-gene-to-role-in-b-cell-cancers

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:03Mutations in notch gene to role in B cell cancers

A blood test can predict early lung cancer prognosis

, 26 August 2020/in E-News /by 3wmedia

Cancer cells obtained from a blood test may be able to predict how early-stage lung cancer patients will fare, a team from the University of Michigan has shown.
This information could be used to determine which patients are most likely to benefit from additional therapies to head off the spread of the cancer to other areas of the body.
With a new single cell analysis service in U-M’s Comprehensive Cancer Center, the researchers are making the necessary technology more widely available in the university system. They hope these "liquid biopsies" will be offered to patients within the next five years.
Circulating tumour cells, representing only about one in a billion cells in the bloodstream, are largely untapped sources of information about tumours, but new methods are bringing their diagnostic value ever closer to patient care.
Sunitha Nagrath, U-M professor of chemical engineering who designs devices that can capture these rare cells, led a team including oncologists and surgeons to explore how cancer cells escape tumours and travel through the body in the bloodstream. This is how metastases, or satellite tumours elsewhere in the body, are thought to form.
"The tumours were constantly shedding cells even when they were small — that’s one thing we learned," Nagrath said. "Although we define the tumours as early stage, already they are disseminating cells in the body."
Early-stage lung cancer patients, whose tumours may only measure a few millimetres in diameter, are typically treated with surgical removal of the tumour, but the study results suggest that this may not be enough. A handful of patients had tumours that were shedding hundreds or thousands of tumour cells into the lung.
"Even though you removed the tumour, you left behind these hundreds and hundreds of cells," Nagrath said. "If you know this patient walking out of the clinic is going to relapse after less than a year because of these cells, why don’t we treat them now?"
With a relatively small sample of 36 patients, the team can’t definitively say that an actively shedding tumour will lead to metastasis within a year, but Nagrath is exploring the predictive power of cancer cells drawn from the blood. In particular, the study showed that clusters of two or more tumour cells indicated shorter survival times. Six of the nine patients whose cancer returned during the two to 26 months of follow-up had circulating tumour cells appearing in clusters.
"Ultimately, this method will help us look for and find potential markers for either metastatic spread or cancer detection," said Rishindra Reddy, U-M associate professor of surgery who coordinated the blood samples and designed the study with Nagrath and Nithya Ramnath, an associate professor of medical oncology at the U-M Medical School.

University of Michigan
www.mcancer.org/news/archive/blood-test-can-predict-early-lung-cancer-prognosis
 

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:10A blood test can predict early lung cancer prognosis

Potential cause for lupus identified

, 26 August 2020/in E-News /by 3wmedia

Leading rheumatologist and Feinstein Institute for Medical Research Professor Betty Diamond, MD, may have identified a protein as a cause for the adverse reaction of the immune system in patients suffering from lupus. A better understanding of how the immune system becomes overactive will help lead to more effective treatments for lupus and potentially other autoimmune diseases.
Lupus is an autoimmune disease that causes the immune system to lose the ability to differentiate between foreign agents and healthy tissue. It becomes hyperactive and attacks healthy tissue, causing inflammation and damage to joints, skin, and internal organs. Previous studies have shown that a polymorphism or variation in the gene PRDM1 is a risk factor for lupus. PRDM1 enacts the production of a protein called Blimp-1. In this study, Dr. Diamond and her team were looking to examine how Blimp-1 regulates the immune system.
"A healthy immune system is able to identify organisms that are not normally in the body and activate cells like T-Cells to attack them," said Dr. Diamond. "In the case of patients with an autoimmune disease like lupus, the immune system has started to identify healthy cells as something to target. Our study found that a low level of or no Blimp-1 protein in a particular cell type led to an increase in the protein CTSS which caused the immune system to identify healthy cells as something to attack – particularly in females."
In an animal model, Dr. Diamond’s team was able to show that females with reduced production of Blimp-1 caused an increase in CTSS, a protein that helps the immune system see microbes, or a microorganisms that causes disease. This resulted in an immune system which attacked healthy cells. Male animals with the reduced production of Blimp-1 showed no change in their immune system. Though more study is required to confirm that the risk gene PRDM1 could lead to a hyperactive immune system in human females, this is a significant discovery to better understanding the causes and potential treatments for lupus.


EurekAlert
www.eurekalert.org/pub_releases/2017-07/nh-fii071417.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:16Potential cause for lupus identified

One gene closer to regenerative therapy for muscular disorders

, 26 August 2020/in E-News /by 3wmedia

Reporting results, researchers seek ways to develop regenerative therapies for muscle disorders by getting stem cells to fuse and form functioning skeletal muscle tissues.
A detour on the road to regenerative medicine for people with muscular disorders is figuring out how to coax muscle stem cells to fuse together and form functioning skeletal muscle tissues. A study published reports scientists identify a new gene essential to this process, shedding new light on possible new therapeutic strategies.
Led by researchers at the Cincinnati Children’s Hospital Medical Center Heart Institute, the study demonstrates the gene Gm7325 and its protein – which the scientists named “myomerger” – prompt muscle stem cells to fuse and develop skeletal muscles the body needs to move and survive. They also show that myomerger works with another gene, Tmem8c, and its associated protein “myomaker” to fuse cells that normally would not.
In laboratory tests on embryonic mice engineered to not express myomerger in skeletal muscle, the animals did not develop enough muscle fibre to live.
"These findings stimulate new avenues for cell therapy approaches for regenerative medicine,” said Douglas Millay, PhD, study senior investigator and a scientist in the Division of Molecular Cardiovascular Biology at Cincinnati Children’s. “This includes the potential for cells expressing myomaker and myomerger to be loaded with therapeutic material and then fused to diseased tissue. An example would be muscular dystrophy, which is a devastating genetic muscle disease. The fusion technology possibly could be harnessed to provide muscle cells with a normal copy of the missing gene.”
One of the molecular mysteries hindering development of regenerative therapy for muscles is uncovering the precise genetic and molecular processes that cause skeletal muscle stem cells (called myoblasts) to fuse and form the striated muscle fibres that allow movement. Millay and his colleagues are identifying, deconstructing and analysing these processes to search for new therapeutic clues.
Genetic degenerative disorders of the muscle number in the dozens, but are rare in the overall population, according to the National Institutes of Health. The major categories of these devastating wasting diseases include: muscular dystrophy, congenital myopathy and metabolic myopathy. Muscular dystrophies are a group of more than 30 genetic diseases characterized by progressive weakness and degeneration of the skeletal muscles that control movement. The most common form is Duchenne MD.
A previous study authored by Millay in 2014 identified myomaker and its gene through bioinformatic analysis. Myomaker is also required for myoblast stem cells to fuse. However, it was clear from that work that myomaker did not work alone and needed a partner to drive the fusion process. The current study indicates that myomerger is the missing link for fusion, and that both genes are absolutely required for fusion to occur, according to the researchers.
To find additional genes that regulate fusion, Millay’s team screened for those activated by expression of a protein called MyoD, which is the primary initiator of the all the genes that make muscle. The team focused on the top 100 genes induced by MyoD (including GM7325/myomerger) and designed a screen to test the factors that could function within and across cell membranes. They also looked for genes not previously studied for having a role in fusing muscle stem cells. These analyses eventually pointed to a previously uncharacterized gene listed in the database – Gm7325.
The researchers are building on their current findings, which they say establishes a system for reconstituting cell fusion in mammalian cells, a feat not yet achieved by biomedical science.


Cincinnati Children’s Hospital
www.cincinnatichildrens.org/news/release/2017/regenerative-therapy

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:25One gene closer to regenerative therapy for muscular disorders

Candidate genetic factor for the effects of prenatal alcohol exposure has been found

, 26 August 2020/in E-News /by 3wmedia

Researchers at the University of Helsinki have found a genetic variation, which associates with the damage caused by maternal alcohol consumption. This genetic variation clarifies the role of genetic factors in the alcohol-induced developmental disorders and could be useful in future diagnostics.
The effects of prenatal alcohol exposure (PAE) on placental genes involved in growth and on the size of affected newborns were explored in the study performed at the University of Helsinki and Helsinki University Hospital in Finland. The researchers observed that alcohol alters epigenetic marks on the placenta and also the head size of newborn, depending on the genetic variation inherited from the parents.
Epigenetic marks are molecules, which bind to DNA sequence. They regulate the activity of genes and thus production of proteins in the cells.
The research material was 39 alcohol-exposed and 100 control placentas. They were collected from mothers who gave birth in the Helsinki University Hospital and had given approval for their participation in the study.
It is already known that in addition to neuronal disorders and birth defects, alcohol causes retarded growth. Therefore the researchers focused on two genes, insulin-like growth hormone 2 (IGF2) and H19, which locate near each other and regulate the growth of the placenta and embryo.
There is a common genetic variation in the Finnish population in the DNA region which regulates the function of these genes. The genetic variants that an individual inherits from the parents have been shown to associate with the amount of epigenetic marks on this region. This led the researchers to examine this intensively studied genomic region in a novel way.
– We divided all our samples in four groups according to the inherited genetic variations. We observed that there were different quantities of epigenetic marks in the groups of alcohol-exposed placentas compared with controls, explains Adjunct Professor Nina Kaminen-Ahola, the leader of the research team at the University of Helsinki.
– This finding led us to explore if there are changes in the gene expression and newborns’ birth measurements that would associate with the variation. We observed that expression of the negative growth controller H19 was significantly increased compared to expression of the growth supporter IGF2 in certain variant groups of the alcohol-exposed placentas.
The birth measurements were analysed by using new Finnish growth charts. Previous studies have shown that alcohol particularly affects the head growth and thus head circumference has been used as a mark of alcohol-induced damage. However, this study indicated that the head circumferences of alcohol-exposed newborns vary significantly depending on the genetic variations inherited from parents.
– We do not know yet if this variation is connected with alcohol-induced neuronal disorders. However, this could explain earlier study results concerning decreased correlation between HCs and brain size, as well as between HCs and cognitive skills among alcohol-exposed children. This suggests that alcohol causes damage in the brain in all genotypes, but this cannot be always seen in the head size, Kaminen-Ahola states.

University of Helsinki
www.helsinki.fi/en/news/a-candidate-genetic-factor-for-the-effects-of-prenatal-alcohol-exposure-has-been-found

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:392021-01-08 11:09:05Candidate genetic factor for the effects of prenatal alcohol exposure has been found
Page 193 of 227«‹191192193194195›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription