Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

How epigenetic regulation of the Hoxb gene cluster maintains normal blood-forming cells and inhibits leukemia

, 26 August 2020/in E-News /by 3wmedia

Scientists have known for decades that the Hox family of transcription factors are key regulators in the formation of blood cells and the development of leukemia. Exactly how this large family of genes, which are distributed in four separate chromosomal clusters named A through D, is regulated has been less clear. Now, new research from the Stowers Institute for Medical Research reveals that a DNA regulatory element within the Hoxb cluster globally mediates signals to the majority of Hoxb genes to control their expression in blood-forming stem cells.
“It’s like we found a general control that simultaneously turns the lights on and off in many rooms, rather than having a single switch that controls each individual room,” says Stowers Investigator Linheng Li, PhD, who co-led the study along with Stowers Scientific Director and Investigator Robb Krumlauf, PhD. These findings also help explain why a particular form of leukemia resists treatment and points to potential new therapeutic avenues.
In mammals, the blood system contains a number of mature cell types — white blood cells, red blood cells, platelets — that arise from blood-forming, or hematopoietic, stem cells (HSCs). HSCs renew themselves and differentiate into other cells to replenish the body’s blood supply in a process called hematopoiesis. Hox genes, which are well known for their roles in establishing the body plan of developing organisms, are also important for HSCs to maintain their critical balancing act in the adult blood system, and have been implicated in the development of leukemia.
In an article Li, Krumlauf, and co-authors including first author Pengxu Qian, PhD, second author Bony De Kumar, PhD, and other collaborators provide new details as to how Hox genes are regulated in HSCs. They report that a single cis-regulatory element, DERARE, works over a long range to control the majority of Hoxb genes in HSCs in a coordinated manner. The researchers found that the loss of the DERARE decreased Hoxb expression and altered the types of blood cells arising from HSCs, whereas “turning on” DERARE allowed Hoxb cluster gene expression in progenitor cells and increased the progression of leukemia.
Genes can be regulated by non-coding DNA sequences termed cis-regulatory sequences. These sequences get input from multiple types of molecules, such as transcription factors, histone modifiers, or various morphogens. The DERARE, or distal element RARE (retinoic acid response element), is a cis-regulatory element that responds to signals from the vitamin A derivative retinoic acid and determines the fate of HSCs.
Using human leukemia cell lines and mouse models, the Stowers researchers and collaborators have identified a mechanism for how the retinoid-sensitive DERARE maintains normal hematopoiesis and prevents acute myeloid leukemia (AML) by regulating Hoxb cluster genes in a methylation-dependent manner.
Methylation is the process of adding methyl groups to the DNA molecule, which can change the activity of the DNA segment. The researchers demonstrated that DNA methyltransferases mediate DNA methylation on DERARE, leading to reduced Hoxb cluster expression. AML patients with mutations in the DNA methyltransferase DNMT3A exhibit reduced DERARE methylation, elevated Hoxb expression, and adverse outcomes.
“In two human AML cell lines carrying a DNMT3A mutation, we used an adaptation of genome editing technology called dCas9-DNMT3A to specifically increase the DNA methylation on DERARE. This targeted methylation technique was able to reduce Hoxb cluster expression and alleviate the progression of leukemia,” says Qian. “It is known that Hoxb cluster genes show a dramatic increase in expression in patients with DNMT3A-mutated AML. Our work provides mechanistic insights into the use of DNA methylation on the DERARE as a potential screening tool for therapeutic drugs that target DNMT3A-mutated AML, thus leading to the development of new drugs for treating AML, in which DNA methylation is abnormal.”

Stowers Institutehttps://tinyurl.com/yarf3xfd

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:39How epigenetic regulation of the Hoxb gene cluster maintains normal blood-forming cells and inhibits leukemia

Mutations of the bassoon gene causing new brain disorder

, 26 August 2020/in E-News /by 3wmedia

Newly discovered gene mutations may help explain the cause of a disease that drastically impairs walking and thinking.
Mutations have been found in the bassoon (BSN) gene, which is involved with the central nervous system, in patients with symptoms similar to, but different from, a rare brain disorder called progressive supranuclear palsy (PSP).
PSP, a form of Parkinson’s disease, is often difficult to diagnose because it can affect people in different ways. Serious problems often include difficulty with walking and balance in addition to a decline in cognitive abilities such as frontal lobe dysfunction.
A team of Japanese researchers investigated patients whose symptoms resembled not only PSP but also Alzheimer’s disease. Despite similarities in the symptoms, detailed pathological analyses showed no resemblance to either disease, which prompted the team to further research the new disease’s underlying mechanism.
They first analysed the genomes of a Japanese family with several members displaying PSP-like symptoms. They identified a mutation in the BSN gene only in family members with symptoms. These individuals did not have mutations in the 52 other genes associated with PSP and other neurological disorders such as Alzheimer’s and Parkinson’s. This was the first time BSN gene is associated with a neurological disorder.
The researchers also detected three other mutations in the BSN gene in four out of 41 other patients displaying sporadic, or non-familial, PSP-like symptoms. None of the BSN mutations were detected in a random sample of 100 healthy individuals, underscoring the strong involvement of BSN mutations in the disease.
An autopsy done on one of the family members with the BSN mutation showed an accumulation of a protein called tau in the brain, which is not seen in a normal brain. The researchers believe that the BSN mutation is involved in the tau accumulation, which could cause the development of PSP-like symptoms. An experiment introducing a mutated rat BSN gene to cultured cells also suggested that the mutation causes the accumulation of tau. Communication between nerve fibres could also be affected, as BSN protein play a role in it.
ScienceDailywww.sciencedaily.com/releases/2018/03/180323093731.htm

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:46Mutations of the bassoon gene causing new brain disorder

World-first array of multifunctional compounds for detection, imaging and treatment of Alzheimer’s Disease

, 26 August 2020/in E-News /by 3wmedia

Hong Kong Baptist University (HKBU) Chemistry scholars have invented a new class of multifunctional cyanine compounds that can be used for detection, imaging and thus treatment of Alzheimer’s disease. The discovery has been granted four US patents and a patent by the Chinese government.
The research team was jointly led by Professor Ricky Wong Man-shing and Associate Professor Dr Li Hung-wing with members from the Department of Chemistry of HKBU. By making use of the proprietary compounds, the HKBU team, on one hand, has proved that the cyanine compounds applied onto a “nano”-detection platform can quantify trace amounts of Alzheimer’s disease related protein biomarkers present in human fluids such as cerebrospinal fluid, serum, saliva, and urine. It is a rapid, low-cost and ultrasensitive detection assay. On the other hand, the compounds also serve as an imaging agent for in vivo detection and monitoring of disease progression and understanding the disease pathogenesis as well as a drug candidate for treatment of the disease.
Alzheimer’s disease is the most common neurodegenerative disorder, it is incurable and the underlying cause is still not well understood. Alzheimer’s disease is characterized by the formation of amyloid plaque in human brains. Clinical evaluation, cognitive tests and neuroimaging (monitoring the brain’s structural changes) are commonly used to diagnose Alzheimer’s disease, but are only effective after symptoms appear. Moreover, neuroimaging, such as magnetic resonance imaging (MRI), requires injecting contrast agents into a person that may bring health risks.
The proteins of interest, namely beta amyloid peptide, tau, and p-tau, in human’s cerebrospinal fluid are linked to Alzheimer’s disease. The versatile detection assay using the compounds developed by the team requires only a minute amount of the sample fluids (a few microliters) to reliably quantify the target proteins. The detection assay developed by the team is fast, cheaper and more sensitive than traditional commercially available biological methods.
Detection is based on the specific immuno-interactions between the target antigen and detection antibody that is immobilised on the surface of magnetic nanoparticles. The sandwiched immuno-assembly is then labelled with a newly developed turn-on cyanine compound that enhances the fluorescence signal, which is quantified by an imaging system.
Dr Li said, “This newly developed assay will be particularly useful as a low-cost yet accurate diagnostic and prognostic tool for Alzheimer’s disease. It can also serve as a novel alternative non-invasive tool for population-wide screening for the disease. This scientific detection assay has a high potential to serve as a practical diagnosis tool.”
Dr Li said that the new approach is universal and general enough to be readily modified and elaborated further, such as replacing the antibodies with other disease-associated antibodies, nucleic acids, for a broad range of biomedical research and disease diagnostics.   
Hong Kong Baptist Universityhkbuenews.hkbu.edu.hk/?t=press_release_details/2196

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:53World-first array of multifunctional compounds for detection, imaging and treatment of Alzheimer’s Disease

Scientists find possible autism biomarker in cerebrospinal fluid

, 26 August 2020/in E-News /by 3wmedia

Autism diagnosis is slow and cumbersome, but new findings linking a hormone called vasopressin to social behaviour in monkeys and autism in people may change that. Low vasopressin in cerebrospinal fluid was related to less sociability in both species, indicating the hormone may be a biomarker for autism.
A paper describing the research, which was led by scientists at the Stanford University School of Medicine and the University of California-Davis, was recently published.
“Since autism affects the brain, it’s really hard to access the biology of the condition to know what might be altered,” said Karen Parker, PhD, associate professor of psychiatry and behavioural sciences at Stanford and the lead author of the new study. “Right now, the diagnosis is based on parents’ reports of their children’s symptoms, and on clinicians observing children in the clinic.”
The study’s senior author is John Capitanio, PhD, professor of psychology at UC-Davis.
Autism, a developmental disorder characterized by impaired social abilities, affects 1 in 68 U.S. children. Research has shown that early, intensive behavioural treatment is beneficial. Yet many children don’t receive a timely diagnosis. A biological test, with a specific lab measurement indicating autism, could make diagnosis faster.
Not only is the biology of autism difficult to study in people, but many research animals are unsuited to autism research, Parker said. For instance, mice often fail to show behavioural changes in response to gene mutations that cause autism in people.
So the researchers looked for autism biomarkers in rhesus monkeys, a species whose social capabilities are closer to those of humans. The monkeys had been raised by their mothers in social groups in a primate research colony at UC-Davis. From 222 male animals, the scientists selected 15 with naturally low sociability and compared them with 15 monkeys with naturally high sociability on several biological parameters.
The scientists measured levels of two hormones, oxytocin and vasopressin, in the monkeys’ blood and in their cerebrospinal fluid, which bathes the brain. Both hormones are peptides implicated in a variety of social roles, including parental care and bonds between mates. Some prior studies have hinted that these hormones may also be involved in autism.
Monkeys in the less social group had significantly less vasopressin in their cerebrospinal fluid than monkeys in the more social group. These vasopressin levels accurately predicted the frequency with which individual monkeys participated in social grooming, an important social activity for rhesus monkeys. Vasopressin levels in blood were not different between the two groups. In a second group of 10 monkeys, whose cerebrospinal fluid was sampled four times over four months, the scientists showed that vasopressin levels in the fluid were stable over time.
The researchers also compared vasopressin levels in 14 boys with autism and seven age-matched children without autism. (Vasopressin levels were tested in the children’s cerebrospinal fluid, which was collected via lumbar puncture for medical reasons; their families agreed to allow some fluid to be used for research.) Children with autism had lower vasopressin levels than children without autism, the study found.
“What we consider this to be at this point is a biomarker for low sociability,” Capitanio said.
The researchers now want to test a larger group of monkeys for vasopressin levels to determine whether the hormone levels can distinguish monkeys with low social abilities from others with a wide range of social ability. And they want to explore whether low vasopressin could be detected before symptoms of impaired social ability emerge.
“We don’t know if we see really low cerebrospinal fluid vasopressin before you see behavioral symptoms of autism,” Parker said. “Ideally, it would be a risk marker, but we haven’t studied that yet.”

Stanford School of Medicinemed.stanford.edu/news/all-news/2018/05/scientists-find-possible-autism-biomarker-in-cerebrospinal-fluid.html

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:42Scientists find possible autism biomarker in cerebrospinal fluid

Potential RNA markers of abnormal heart rhythms identified

, 26 August 2020/in E-News /by 3wmedia

Atrial fibrillation (AF) is a heart condition that causes an irregular, and often rapid, heart rate. It increases the risk of developing strokes, heart failure, and even dementia. Although it can be associated with aging, high blood pressure, diabetes, heart valve problems, etc, about one-third of patients with AF have no symptoms until they suffer a stroke. Therefore, a means of identifying or predicting AF with the aim of starting preventative therapy is highly desirable.
AF is associated with several factors that maintain its progression, including inflammation, electrical disturbances, and structural changes in the heart’s upper chambers (the atria). Moreover, several different short sequences of RNA known as microRNAs (miRNAs) have been linked with AF pathology. miRNAs control gene expression after the transcription stage, and have been suggested as possible markers for some cardiovascular diseases because of their stability in the bloodstream. However, it remains unknown whether the miRNAs shown to be related to AF are suitable as predictive biomarkers of disease.
A team of researchers from Tokyo Medical and Dental University (TMDU) addressed this issue by comparing miRNA expression in AF patients and healthy controls, and between control mice and those with a similar abnormal heart rhythm to AF. They showed that four miRNAs not previously associated with AF were significantly upregulated in the serum of AF patients and diseased mice, indicating their potential use as AF biomarkers. The study results were recently published in Circulation Journal.
Initially, human serum and mouse atrial tissue were screened for 733 and 672 miRNAs, respectively. These were eventually narrowed down to four by excluding non-detectable and non-specific miRNAs, and focusing on the quantification of their expression.
“One of the miRNAs, miR-214-3p, is implicated in inflammation, so we wondered whether this might be the underlying mechanism of miRNA-induced AF pathology,” first author Yu Natsume says. “We compared miRNA expression with levels of a serum inflammatory factor but found no correlation suggestive of an association.”
Statistical analysis of diagnostic ability showed that miR-214-3p and miR-342-5p had the highest accuracy as individual biomarkers at predicting AF, but that a combined analysis of all four miRNAs slightly improved this accuracy.
“The same two miRNAs showed increased expression in a subset of patients with intermittent AF and another subset with chronic AF,” corresponding author Tetsuo Sasano says. “The increases were in comparison both with healthy controls of the same age and young healthy controls, suggesting these miRNAs may predict AF regardless of the age of the individual.”
Tokyo Medical and Dental University (TMDU)www.tmd.ac.jp/english/press-release/20180313/index.html

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:49Potential RNA markers of abnormal heart rhythms identified

Researchers find genes may ‘snowball’ obesity

, 26 August 2020/in E-News /by 3wmedia

There are nine genes that make you gain more weight if you already have a high body mass index, McMaster University researchers have found.
“It’s similar to a tiny snow ball at a top of a hill that becomes bigger and bigger when rolling down the hill,” said senior author David Meyre, an associate professor of health research methods, evidence and impact at McMaster University. He also holds the Canada Research Chair in Genetics of Obesity.
“The effect of these genes may be amplified by four times, if we compare the 10% of the population at the low end of the body mass index, compared to the 10% at the high end,” he added.
The study’s co-first authors are postdoctoral fellow Arkan Abadi and PhD student Akram Alyass, who both work in the Meyre laboratory.
Although the increasing average body mass index of the population of several high-income countries has recently plateaued, the researchers note in the study, the cases of extreme forms of obesity are still growing. People who are morbidly obese are at risk of health complications such as diabetes, cardiovascular disease, hypertension and cancers and early death.
On top of lifestyle factors such as unhealthy diet and physical inactivity, genetic factors are also known to play an important role, with 50 to 80 per cent of body mass index related to genetics.
The researchers looked at 37 genes that are well established as modulating the body mass in 75,230 adults with European ancestry and found the nine with the snowball effect.
“These genes may, in part, explain why some individuals experience uncontrolled and constant weight gain across their life, despite the availability of different therapeutic approaches,” said Meyre. “The plausible explanation is that there are interactions between the snowball obesity genes and risk environmental factors.”
He added that the idea of preventing obesity in the first place is a good strategy for people with a high genetic risk for obesity.
“We have an important message of hope that the carriers of these genes, if they stay in the low end of body mass index through appropriate lifestyle, may minimize the effect of the snowball obesity genes.”
McMaster Universityhttps://tinyurl.com/ya247466

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:56Researchers find genes may ‘snowball’ obesity

Orion to sell its Orion Diagnostica division

, 26 August 2020/in E-News /by 3wmedia

Orion Corporation (“Orion”) had announced last January that it was evaluating strategic alternatives of the Group’s Orion Diagnostica business division and had decided to investigate the possible sale of Orion Diagnostica as one alternative. Orion has now signed an agreement on the sale of all shares in Orion Diagnostica Oy (i.e. the Orion Diagnostica business division) to an investment fund managed by Axcel Management A/S, a leading Nordic private equity investment company (“Axcel”). The closing of the transaction is expected to take place during the second quarter of 2018. The closing is not conditional upon the parties obtaining approvals from competition law or other authorities or fulfilment of other preconditions.
The fixed purchase price is approximately EUR 163 million. In addition, Orion has a possibility to receive a variable component of EUR 60 million maximum. The payment of this variable component is based on return on investment for Axcel at the time of their exit. Orion estimates a capital gain of about EUR 128 million in other operating income for 2018. Due to the uncertainty relating to the variable component, the estimated capital gain does not include any part of the variable component.
“Orion Diagnostica has operated as an independent business and it has no material business synergies with Orion’s other operations. The sale of the division will allow us to further focus on growth and achieving our financial goals. Orion is currently working on numerous projects that target growth in our core area of the pharmaceuticals business. For example, we are actively evaluating late stage in-licensing opportunities. We also continue to invest in our own research and development activities, with new clinical trials, for example. The capital gain from the transaction will strengthen our equity position and maintain our ability to achieve our dividend distribution objective”, says Timo Lappalainen, President and CEO of Orion.
“Together with Orion Diagnostica’s management and employees, we intend to further develop the company into an even stronger operator in the global diagnostics market. On the back of an attractive customer proposition and a strong market position, we see great opportunity to grow Orion Diagnostica further both geographically and by expanding its product offering”, says Thomas Blomqvist, Partner at Axcel.
www.oriondiagnostica.com

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:44Orion to sell its Orion Diagnostica division

Breakthroughs in understanding genetic basis of aggressive prostate cancer

, 26 August 2020/in E-News /by 3wmedia

The retinoblastoma (RB) susceptibility gene was the first gatekeeper gene discovered for cancer. When it was removed or damaged, cancer thrived. Over the years, researchers have discovered methods that have allowed them to experimentally remove the RB gene in order to study it, but just how the gene’s loss made cancers more aggressive was poorly understood. By studying patient samples, researchers at the Sidney Kimmel Cancer Center at Jefferson (SKCC) found how one type of RB removal, but not another, caused large-scale genetic changes that could make cancer both resistant to treatment and more likely to spread.
“RB loss causes a major reprogramming of gene expression, allowing induction of pathways that promote features that induce characteristics of lethal disease,” said senior author Karen Knudsen, PhD, Director of the SKCC. The study is the first to identify the molecular consequences of RB loss and illustrate the clinical relevance of RB loss-induced transcriptional rewiring.
The study involved a multinational collaboration between SKCC investigators and other US-based laboratories, as well as clinical and basic science researchers in the UK, Italy, Belgium, Finland and Sweden.
The study, which was spearheaded by first author Christopher McNair, PhD, a graduate student in the laboratory of Dr. Knudsen, undertook an extensive analysis of tumour samples and cell-free DNA samples from patients with advanced, lethal-stage prostate cancer. Although there are several ways to remove RB from the cellular machinery, the group found that complete loss, rather than inactivation, of the RB gene was associated with changes in gene networks closely linked to aggressive disease. Surprisingly, the cancer-promoting programme that RB loss unleashed was distinct from the cell-cycle control genes that RB is best known for controlling.
The new findings hold great promise for further clinical development and application. First, the research demonstrates that RB status can be tracked using cell-free DNA samples, an approach referred to as “liquid biopsy,” in prostate cancer patient samples. This method will facilitate the analysis of patient tumours and the selection of the most appropriate therapy based on the individualized features of each patient’s cancer subtype. Multiple clinical trials are now underway in Philadelphia that will determine the impact of RB status as a means to guide more precise cancer therapy.
“Unlike breast cancer, all prostate cancers are currently treated in an identical fashion. This discovery, and the clinical trials we have underway, suggest that RB status might be used as means to stratify patients into more effective treatment regimens,” said Wm. Kevin Kelly, DO, Leader of the SKCC Prostate Cancer Programme.
Sidney Kimmel Cancer Centerhttps://tinyurl.com/y9z38zvg

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:55Breakthroughs in understanding genetic basis of aggressive prostate cancer

Gallbladder cancer: Pharmacist finds protein that drives tumour growth

, 26 August 2020/in E-News /by 3wmedia

Patients with gallbladder cancer often show few or no symptoms for long periods of time. As a result, the tumours are only detected at a late stage of the disease when treatment is often no longer possible. Working in collaboration with pathologists at the University of Magdeburg, Sonja M. Kessler, a research pharmacist in the group led by Professor Alexandra K. Kiemer at Saarland University, has identified a new pathway that may allow improved prognosis and treatment of the disease. Kessler has discovered a protein that is linked with tumour growth and that functions as a prognostic marker, thus providing an indication of how the cancer may progress.
The three proteins usually targeted by pharmacist Sonja M. Kessler in her research work are known to play an important role in embryos in the womb. These proteins help to ensure the rapid growth and development of the unborn child. After birth, however, these proteins typically play no further role. ‘All of these proteins are switched off after birth and they are no longer copied from the child’s genetic blueprint,’ explains licenced pharmacist Dr. Sonja M. Kessler, who is carrying out research at Saarland University in the group run by Professor Alexandra K. Kiemer for her Habilitation – the advanced research degree that entitles the holder to teach at professorial level within the German higher education system. However, it turns out that this family of proteins with the unremarkable names IMP1 to 3 can be switched on again. And if that happens, they can cause a lot of harm. Of the three proteins, IMP2 is particularly hostile: ‘Because IMP2 promotes cell division and proliferation, it also drives the growth of tumours,’ explains Kessler.
Research pharmacist Kessler has now succeeded in linking the protein group to gallbladder cancer. ‘We were able to identify the proteins in a large number of tissue samples from gallbladder patients. We were also able to show that the tumour grows faster when the cells contain larger amounts of the IMP2 protein. And in those cases patient prognosis is poorer,’ says Kessler.
This result from a basic research programme may in future help to improve gallbladder treatment. ‘Up until now there have been very few prognostic markers for this tumour,’ says Sonja Kessler. Prognostic markers are substances in blood or tissue samples that indicate that a malignant cancer is likely to have a poor outcome for the patient. Currently available treatment options can therefore be tailored more closely to the patient’s needs, which may help to improve clinical outcomes. IMP2 represents an important and potentially useful prognostic marker for gallbladder cancer. The results of Kessler’s research may also provide the basis for new effective drug treatments. Once the participating protein has been identified, research can be undertaken to influence, slow or even completely prevent the harmful processes that are set in motion by the protein.
University of Saarlandes
www.uni-saarland.de/nc/en/news/article/nr/18177.html

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:09:01Gallbladder cancer: Pharmacist finds protein that drives tumour growth

A new drug to help young patients with genetic obesity

, 26 August 2020/in E-News /by 3wmedia

In a new study researchers from the Institute for Experimental Pediatric Endocrinology of the Charité – Universitätsmedizin Berlin have successfully treated patients whose obesity is caused by a genetic defect. Aside from its beneficial effects on the patients, the researchers also provided insights into the fundamental signalling pathways regulating satiety of the new drug.
A mutation in the gene encoding the leptin receptor (LEPR) can cause extreme hunger starting with the first months of life. As a result, affected individuals develop extreme obesity during childhood. Increased exercise and reduced caloric intake are usually insufficient to stabilize body-weight. In many cases, obesity surgery fails to deliver any benefits, meaning that a drug-based treatment approach becomes increasingly important.
Two years ago, Dr. Peter Kühnen and the working group successfully demonstrated that treatment with a peptide, which activates the melanocortin 4 receptor (MC4R) could play a central role in the body’s energy metabolism and body weight regulation. Leptin, which is also known as the satiety (or starvation) hormone, normally binds to the LEPR, triggering a series of steps that leads to the production of melanocytestimulating hormone (MSH). The binding of MSH to its receptor, the melanocortin 4 receptor (MC4R) transduces the satiety signal to the body. However, if LEPR is defective, the signalling cascade is interrupted. The patient’s hunger remains unabated, placing her/him at greater risk of becoming obese. As part of this current study, researchers used a peptide that binds to the MC4R in the brain, and this activation triggers the normal satiety signal. Working in cooperation with the Clinical Research Unit at the Berlin Institute of Health (BIH), the researchers were able to record significant weight loss in patients with genetic defects affecting LEPR.
“We also wanted to determine why the used peptide was so effective and why, in contrast to other preparations with a similar mode of action, it did not produce any severe side effects,” explains Dr. Kühnen. “We were able to demonstrate that this treatment leads to the activation of a specific and important signalling pathway, whose significance had previously been underestimated.” Dr. Kühnen’s team is planning to conduct further research to determine whether other patients might benefit from this drug: “It is possible that other groups of patients with dysfunctions affecting the same signalling pathway might be suitable candidates for this treatment.”

Charité – Universitätsmedizin Berlin https://tinyurl.com/y7dyaqm4

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:32:182021-01-08 11:08:39A new drug to help young patients with genetic obesity
Page 200 of 227«‹198199200201202›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription