Scientists have identified key changes in immune cells within cancerous tumours that could help improve the development of treatments.
The study also found a set of genes that are expressed at high levels in breast cancer tumours and linked to more aggressive cancer types.
Researchers say the discoveries offer clues to diagnosis and predicting patient survival and reveal significant insights into how tumours behave in common cancers.
Immune cells normally help the body stay healthy by warding off pathogens such as viruses and bacteria. However, sometimes immune cells can wrongly identify cancer tissue as healthy tissue, aiding the spread of tumours.
Researchers therefore focused on the role of immune cells in endometrium and breast cancers. Until now, little was known about how these cells behave in human cancer, making them difficult to spot and target.
They found differences in white blood cells known as monocytes present in the blood of breast and endometrial cancer patients compared with those in healthy individuals. The discovery could accelerate the development of biomarkers to detect cancer and track how patients respond to treatment.
The researchers also identified 37 genes that were highly expressed in breast cancer tumour immune cells – known as tumour-associated macrophages (TAMs) – compared with healthy tissue. This genetic signature is particularly strong in aggressive cancers, including triple negative breast cancer, which is notoriously difficult to treat.
It is also linked to shorter survival in patients, suggesting that it could be used to improve the accuracy of breast cancer prognosis.
The scientists used this discovery to identify specific genes within the signature that could be targeted with future treatments. They honed in on two genes – SIGLEC1 and CCL8 – which were found to be linked to patient survival.
University of Edinburgh
https://tinyurl.com/y3u4xyt2
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:08:11Immune cells key to predicting cancer outcomes
by Peter Murphy It was first noticed that the rate of erythrocyte sedimentation changed owing to illness in the 1700s. The use of this attribute as a measure of inflammatory activity due to underlying disease was formalized into a test in the early 1900s and what has become known as the Westergren test has again recently been proposed to be the reference method for measuring erythrocyte sedimentation rate, which is still a commonly used hematology test today. This article allows you to understand why it is used, how the results are affected by physiological factors and how to perform it to obtain useful and reliable results. Using erythrocyte sedimentation rate measurement to indicate inflammation Explaining erythrocyte sedimentation rate measurement The erythrocyte sedimentation rate (ESR) is a general condition indicator and serves as a guide to determine diagnosis and treatment follow-up of different autoimmune diseases, acute and chronic infections and tumours. ESR is the speed at which erythrocytes settle in a tube and provides medical practitioners with valuable information for the diagnosis of their patients. Normal-sized erythrocytes are negatively charged and repel each other, which limits their sedimentation rate. Erythrocytes that form clumps fall faster than small ones, so factors that increase aggregation will increase sedimentation. This increased sedimentation indicates health problems, resulting in a need for additional tests. Applications of ESR measurement There’s a long list of conditions for which ESR can be used to assist in making a correct diagnosis or managing the care of a patient: autoimmune diseases such as rheumatoid arthritis, temporal arteritis and polymyalgia rheumatica are well known examples, as is multiple myeloma. When the presence of inflammation is suspected, ESR is a simple and cost-effective way of confirming this. Moreover, for patients with a known condition, the ESR test can provide useful information into the overall effectiveness of their treatment. The Westergren method The discovery of the ESR dates back to 1794, but in the 1920s, pathologist Robert Fåhraeus and Alf Westergren developed ESR measurement as we know it. To this day, the so-called Westergren method is recognized as the gold standard, among others by the Erythrocyte sedimentation rate: getting the most out of this test by Peter Murphy It was first noticed that the rate of erythrocyte sedimentation changed owing to illness in the 1700s. The use of this attribute as a measure of inflammatory activity due to underlying disease was formalized into a test in the early 1900s and what has become known as the Westergren test has again recently been proposed to be the reference method for measuring erythrocyte sedimentation rate, which is still a commonly used hematology test today. This article allows you to understand why it is used, how the results are affected by physiological factors and how to perform it to obtain useful and reliable results. Hematology and Flow Cytometry June 2020 13 | Clinical and Laboratory Standards Institute (CLSI). In 2017, the International Council for Standardization in Hematology (ICSH) reconfirmed the Westergren method as the reference method for ESR measurement. The Westergren method owes its popularity to the fact that it’s a simple and inexpensive first-line test, providing valuable information to GPs in the investigation of inflammation after only 60 (or even 30) minutes. Critical factors of a reliable ESR test Although the Westergren method may be the gold standard, many factors can meddle with its reliability. Therefore, always keep in mind the following requirements:
non-hemolysed blood anti-coagulated with EDTA at collection;
blood sample is thoroughly mixed and diluted 4|:|1 using a sodium citrate solution;
the tube is held in vertical position at a constant temperature (±1|°C) between 18|°C and 25|°C in an area free from vibrations, drafts and direct sunlight; and
results are interpreted after at least 30|minutes.
Can we speed up ESR measurement? In the original Westergren method, the ESR is read after 60|minutes. You can imagine this puts practical limitations on the workflow in clinical laboratories. A laboratory investigation, however, showed that 30-minute ESR readings correlate highly with the corresponding 60-minute ESR readings, which is why today most laboratories perform 30-minute ESR readings and then extrapolate them to derive the 60-minute ESR result. There are Westergren alternatives that claim to measure ESR after only 20|seconds, but as it takes at least 10|minutes before sedimentation starts at a constant rate, these tests risk leading to a number of false negatives. Why speeding up ESR measurement is not a good idea The Westergren method and faster alternatives As mentioned above, the 30-minute version of the Westergren test has become the standard in most hospitals and laboratories. However, even though 30|minutes can be regarded as a short time frame, some companies have worked on Westergren alternatives that can be read after mere minutes or even seconds. A major step forward, or so it seems. What’s the deal with fast ESR measurement methods? There are several conditions that ESR methods should comply with in order for them to be reliable. For example, test tubes must be held in vertical position, and the blood must be thoroughly mixed and diluted. Still the most important condition of all doesn’t revolve around equipment; it revolves around time. It takes approximately 10|minutes before red blood cell sedimentation starts at a constant rate. This means that ESR readings after 20|seconds do not actually measure sedimentation but calculate a mathematically derived ESR. This, in turn, leads to ESR readings that don’t correlate with the Westergren standard, leading to a number of false negatives. So, in their attempt to speed up the diagnosis of patients, laboratories that use Westergren alternatives risk overlooking important signs of disease. Speed or reliability? Healthcare and in vitro diagnostics are being improved daily and theories are constantly evolving. This makes it hard to determine which ESR method is the right one to choose. The choice is even harder when you consider that ESR alternatives are comparable to the Westergren method, as long as you treat healthy people under Erythrocyte sedimentation rate test normal circumstances. It’s when people are ill that the results start to deviate. This is why our advice is to always choose a method that adheres closely to the Westergren method [such as automated ESR analysers Starrsed (RR Mechatronics), MixRate and Excyte (ELITech)]. Westergren has always been the method of choice in fundamental studies, meaning that ESR is essentially based on this procedure. Moreover, the Westergren method is recommended by the CLSI and reconfirmed as the gold standard by ICSH, two organizations that inform healthcare professionals on state of the art technologies for in vitro diagnostic testing. Not everything can be rushed Moving forward is part of human nature; it’s why we’re always so busy making things better, faster and more comfortable. But in the case of ESR measurement, we simply have to face the fact that not everything can be rushed. We may be able to speed up the way we live, work and travel; we cannot force red blood cells to settle faster than they do. What we can do, is make ESR measurement tests as reliable as possible and have them help us improve diagnostics and save lives. Physiological and clinical factors that influence ESR values
In the investigation of inflammation, ESR measurement is often the first-line test of choice as it’s simple, inexpensive and – if based on the Westergren method – reliable, reproducible and sensitive. But as is the case with every test, there are physiological and clinical factors that may influence ESR results. In this section, we’ll tell you more about them. However, when reading about factors that influence ESR results, please keep in mind that much, if not all of this information, is based on studies undertaken with the Westergren gold standard ESR method only. This is mainly due to the fact that the Westergren ESR method has been almost universally used to investigate the clinical utility of the test in a range of disease states, with much of this work published in peer reviewed journals. As a result, there’s a deep body of knowledge that describes the impact of disease, the limitations and sources of interference with the Westergren ESR. As the Westergren method for ESR measures a physical process under a defined set of conditions, this expansive body of knowledge cannot simply be ‘transferred’ to estimations of ESR by methods that use centrifugation or optical rheology. What’s normal in ESR? Before discussing the factors that influence ESR results, first we should answer the question: what is normal? When patients suffer from a condition that causes inflammation, their erythrocytes form clumps which makes them settle faster than they would in the absence of an inflammatory response. However, ‘faster’ is a relative term, and what’s ‘normal’ changes based on sex and age category. Physiological and clinical factors that increase ESR The most obvious explanation for increased ESR is inflammation. During acute phase reactions, macromolecular plasma proteins, particularly fibrinogen, are produced that decrease the negative charges between erythrocytes and thereby encourage the formation of cell clumps. And as cell clumps settle faster, this increases ESR. Inflammation indicates a physical problem, meaning additional tests and follow-up are needed. However, there are other factors that increase ESR but don’t necessarily come with inflammation. For example, ESR values are higher for women than for men and increase progressively with age. Pregnancy also increases ESR, which means you’ll be dealing with ESR results above average. In anemia, the number of red blood cells is reduced, which increases so-called rouleaux formation so that the cells fall faster. This effect is strengthened by the reduced hematocrit, which affects the speed of the upward plasma current. Another factor that increases ESR revolves around high protein concentrations. And in macrocytosis, erythrocytes have a shape with a small surface-to-volume ratio, which leads to a higher sedimentation rate. Physiological and clinical factors that decrease ESR Apart from factors that increase ESR, medical practitioners and laboratory scientists should also consider the factors that decrease ESR. This is especially important as decreased ESR results may lead to missed diagnoses, whereas increased ESR results either lead to the right follow-up or false positives. Polycythemia, caused by increased numbers of red blood cells or by a decrease in plasma volume, artificially lowers ESR. Red blood cell abnormalities also affect aggregation, rouleaux formation and therefore sedimentation rate. Another cause of a low ESR is a decrease in plasma proteins, especially of fibrinogen and paraproteins. The four factors that determine ESR reliability (dos and don’ts)
As with any test, the reliability of ESR measurements stands or falls with proper implementation. When not reliably performed, the nonspecific indicator for inflammation may point in the wrong direction, and result in either a false positive or a false negative. This may lead to the initiation of unnecessary investigations or worse: the overlooking of serious problems that actually needed follow-up. In this section, we discuss some do’s and don’ts when performing ESR measurement, to guarantee ESR reliability. Factor 1: blood collection Do: make sure you mix and dilute the sample 4:1 using a sodium citrate solution. If you adhere to these practices, you standardize the way you handle the blood samples, and therefore their suitability for ESR. Don’t: leave the sample for too long before testing. We can imagine you’re pretty busy, and that you can’t do everything at the same time. However, when it comes to blood collection for ESR tests, some speed is required. After four hours, the results won’t be as accurate as before, which may negatively impact the reliability of the result. We therefore recommend performing the test within these four hours. If you really can’t make it in time, 24|hours is the max, but only if the sample is stored at 4|°C. Factor 2: tube handling Do: hold the tube vertically. A tube that is not held completely vertical can lead to increased sedimentation rates and is one of the technical factors that can affect ESR readings. And as we discussed in the previous paragraph, temperature is a factor too. Therefore, always place the tube in a stable and vertical position and at a constant temperature. Don’t: expose the sample to vibrations, draft and sunlight, as all of these factors can have a strong influence on the final result obtained. Factor 3: result reading Do: wait 30|minutes. This is a very important one. Before reading ESR results, you should always wait 30|minutes. There are ESR testing methods that claim to show reliable results within only 20|seconds, but as it takes 10|minutes before sedimentation starts at a constant rate, these tests do not actually measure sedimentation. In fact, they calculate a mathematically derived ESR, leading to a number of false negatives. Don’t: include the buffy coat (which is made up of leukocytes) in the erythrocyte column. Factor 4: test quality Do: go with an automated ESR test. They provide you with more reliable results, not least because they can correct hazy results. Moreover, automated ESR tests have a higher throughput compared to manual tests and minimize human contact with the tubes, which helps you reduce operations costs and minimize occupational health and safety risks. Don’t: choose an ESR test that deviates from the Westergren standard. This method has always been the method of choice in fundamental studies, meaning that ESR is essentially based on this procedure. ESR tests that deviate from the Westergren will logically provide you with different ESR values, meaning they can lead you in the wrong direction. This is why the Westergren method is recom-mended by the CLSI and reconfirmed as the gold standard by ICSH. ESR test as a reliable tool
If you keep these dos and don’ts in mind, you’re well on your way to making the ESR test a reliable tool that’s going to help you diagnose patients fast and error-free. The author Peter Murphy MBA(TechMgt), MAACB, BSc, GradDipEd ELITech Group, Braeside, Victoria 3195, Australia E-mail: p.murphy@elitechgroup.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:07:48Erythrocyte sedimentation rate: getting the most out of this test
In response to the global COVID-19 pandemic, Beckman Coulter, a global leader in clinical diagnostics, announced 31 March that it is developing assays to identify IgM and IgG antibodies to SARS-CoV-2. Research has shown that after infection with SARS-CoV-2, viral antigens stimulate the body’s immune system to produce antibodies that can be detected with IgM and IgG tests.
The assays will be designed for use on any of Beckman Coulter’s high-throughput Access family of immunoassay systems, including the Access 2 and DxI series, which can be found worldwide.
“Antibody assays play a critical role in understanding the level of immunity an individual has developed against SARS-CoV-2,” said Kathleen Orland, Senior Vice President and General Manager for Beckman Coulter’s Chemistry and Immunoassay Business. “This type of understanding could help identify those who would require a vaccine, once available, or when an infected individual could safely return to work.”
Shamiram R. Feinglass, MD, MPH, Chief Medical Officer, Beckman Coulter, added: “With the ability to assess a patient’s immunity to SARS-CoV-2, this testing modality may enable clinicians to clear hospital staff, emergency responders, and others to get back to work with an indication that they have had prior exposure and therefore have built an immunity to the disease. This test could allow those without immunity to be identified and kept safe until the pandemic subsides.”
Beckman Coulter operates within the Danaher Corporation, together with a collection of the world’s leading diagnostic companies, all on the front line in the fight against coronavirus.
Once the assays are finalized, Beckman Coulter intends to achieve CE mark certification and to follow FDA’s Emergency Use Notification process.
For the latest information on the new assays, visit www.beckmancoulter.com/coronavirus
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:07:55Beckman Coulter to produce antibody assays for Covid-19
The development of decision support systems for pathology and their deployment in clinical practice have been hindered by the need for large manually annotated datasets.
To overcome this problem, the authors present a multiple instance learning-based deep learning system that uses only the reported diagnoses as labels for training, thereby avoiding expensive and time-consuming pixel-wise manual annotations. We evaluated this framework at scale on a dataset of 44,732 whole slide images from 15,187 patients without any form of data curation. Tests on prostate cancer, basal cell carcinoma and breast cancer metastases to axillary lymph nodes resulted in areas under the curve above 0.98 for all cancer types. Its clinical application would allow pathologists to exclude 65-75% of slides while retaining 100% sensitivity. The results show that this system has the ability to train accurate classification models at unprecedented scale, laying the foundation for the deployment of computational decision support systems in clinical practice.
NCBIwww.ncbi.nlm.nih.gov/pubmed/31308507
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:08:03Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
UK-based iPSC (induced pluripotent stem cells) disease modelling company DefiniGEN has identified iPSC-derived intestinal organoids that could be used to help structure in vitro studies of the biology of SARS-CoV-2 infection across cohorts of multiple patients.
While SARS-CoV-2 primarily targets the respiratory system, studies have shown that it also infects and multiplies within the intestinal epithelium. IPSC-derived organoids exhibit characteristics that closely mimic the in vivo intestinal epithelium, making them a valuable surrogate model for studying the virus.
The company says their iPSC-derived intestinal organoids provide a unique in vitro system to model the human intestine. The organoids display a polarized epithelium and harbour a mixture of cell types normally present in the primary intestinal epithelium barrier in vivo, including goblet cells, Paneth cells, enterocytes, LRG5+ stem cells, and enteroendocrine cells. The organoids polarise, form crypt structures and grow villi at the apical surface, and are shown to secrete mucus in a similar manner to primary human gut tissue.
DefiniGEN points out that several studies have proven that angio-tensin-converting enzyme 2 (ACE2) expression in host cells is required for SARS-CoV-2 recognition and infection. Activity of membrane proteases such as TMPRSS2 cleaves the coronavirus’ Spike protein and facilitates the membrane fusion with the host cell. Human intestine is one of the few human tissues with high expression of both ACE2 and TMPRSS2 therefore is a good candidate to study Covid-19 and the mechanisms of the SARS-CoV-2 infection.
Additionally, DefiniGEN have a platform to generate various patient-derived intestinal models which could support population studies, using many different donors with diverse ethnic profiles.
Such studies are useful as there is growing evidence that ethnic differences are a major factor in patients showing a severe response to Covid-19.
DefiniGEN’s differentiation platform is optimized to enable successful generation of intestinal organoids from a diverse range of patients. Patient skin fibroblasts or PBMCs can first be reprogrammed to iPSC, and then differentiated to produce mature intestinal organoids which carry the original patient genetics, and so manifest a gut model specific to that donor.
For more information, visit www.definigen.com/products/intestinal/covid-19
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:07:51DefiniGEN launches tool to support in vitro intestinal research of Covid-19
Johnson & Johnson has announced the selection of a lead COVID-19 vaccine candidate on which it expects to initiate human clinical studies by September at the latest with the first batches of the vaccine available for emergency use authorization in early 2021.
In addition, the company announced the significant expansion of the existing partnership between the Janssen Pharmaceutical Companies of Johnson & Johnson and the Biomedical Advanced Research and Development Authority (BARDA).
Johnson & Johnson also said the company will rapidly scale up its manufacturing capacity with the goal of providing a global supply of more than one billion doses of the vaccine.
Through the new partnership, BARDA and Johnson & Johnson together have committed more than $1 billion of investment to co-fund vaccine research, development, and clinical testing. The company says will use its validated vaccine platform and is allocating resources, including personnel and infrastructure globally, as needed, to focus on these efforts.
BARDA is part of the Office of the Assistant Secretary for Preparedness and Response (ASPR) at the U.S. Department of Health and Human Services.
Commenting on the initiative, Alex Gorsky, Chairman and Chief Executive Officer, Johnson & Johnson, said: “The world is facing an urgent public health crisis and we are committed to doing our part to make a COVID-19 vaccine available and affordable globally as quickly as possible. As the world’s largest healthcare company, we feel a deep responsibility to improve the health of people around the world every day. Johnson & Johnson is well positioned through our combination of scientific expertise, operational scale and financial strength to bring our resources in collaboration with others to accelerate the fight against this pandemic.”
The company’s expansion of its manufacturing capacity will include the establishment of new U.S. vaccine manufacturing capabilities and scaling up capacity in other countries. The additional capacity will assist in the rapid production of a vaccine and will enable the supply of more than one billion doses of a safe and effective vaccine globally.
Paul Stoffels, M.D., Vice Chairman of the Executive Committee and Chief Scientific Officer, Johnson & Johnson, said: “We are very pleased to have identified a lead vaccine candidate from the constructs we have been working on since January. We are moving on an accelerated timeline toward Phase 1 human clinical trials at the latest by September 2020 and, supported by the global production capability that we are scaling up in parallel to this testing, we expect a vaccine could be ready for emergency use in early 2021.” In addition to the vaccine development efforts, BARDA and Johnson & Johnson have also expanded their partnership to accelerate Janssen’s ongoing work in screening compound libraries, including compounds from other pharmaceutical companies. The company’s aim is to identify potential treatments against the novel coronavirus. Johnson & Johnson and BARDA are both providing funding as part of this partnership. These antiviral screening efforts are being conducted in partnership with the Rega Institute for Medical Research (KU Leuven/University of Leuven), in Belgium.
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:07:58Johnson & Johnson aims to produce a billion doses of COVID-19 vaccine
Genetic alterations in low-risk prostate cancer diagnosed by needle biopsy can identify men that harbour higher-risk cancer in their prostate glands, Mayo Clinic has discovered. The research found for the first time that genetic alterations associated with intermediate- and high-risk prostate cancer also may be present in some cases of low-risk prostate cancers.
The study found the needle biopsy procedure may miss higher-risk cancer that increases the risk of disease progression. Researchers say that men diagnosed with low-risk cancer may benefit from additional testing for these chromosomal alterations.
“We have discovered new molecular markers that can help guide men in their decisions about the course of their prostate cancer care,” says George Vasmatzis, Ph.D., co-director of the Center for Individualized Medicine Biomarker Discovery Program and lead author on the study. “Overtreatment has been issue for the group of men that our study targets. We found that the presence of genetic alterations in low-risk cancer can help men decide whether treatment or active surveillance is right for them.”
Prostate cancer is assessed by Gleason patterns and score that indicate grade. The Gleason patterns are strongly associated with risk of disease progression. Gleason pattern 3 prostate cancer is considered to be low-risk. Gleason patterns 4 and 5 cancer carry a higher risk of aggressive behaviour.
Men whose tumour is composed entirely of Gleason pattern 3 may choose active surveillance. They are monitored closely with blood tests and needle biopsies, as necessary. Or they may be referred to treatment, such as surgery and radiation, particularly if they have Gleason pattern 4 or 5.
Men with a low-risk cancer sometimes choose surgery because they don’t want to risk disease progression. The study found that men who do not have these alterations in their cancers have a low risk of harbouring aggressive disease. These men may feel more comfortable choosing active surveillance. Alternatively, if a man’s low-risk tumour shows these alterations, they have a higher risk that their cancer may progress. They may consider treatment, including surgery.
Researchers performed DNA sequencing with a high-tech genomic tool known as mate-pair sequencing. This research was performed on specific Gleason patterns from frozen cancer specimens from 126 men who had their prostate glands removed. They found five genes are more frequently altered in Gleason patterns 4 and 5. These alterations were found more commonly in Gleason pattern 3 associated with higher Gleason patterns and not when Gleason pattern 3 was found alone.
“The needle biopsy procedure samples only a small portion of the tumour. It is not uncommon that a man with a Gleason pattern 3 on needle biopsy specimen harbours a higher-grade cancer next to the pattern 3 that was missed by the procedure,” says John Cheville, M.D., co-director of the Center for Individualized Medicine Biomarker Discovery Program and co-author of the study. “Therefore, if we identify these alterations in a Gleason pattern 3, there is a higher likelihood that Gleason pattern 4 is nearby.”
Mayo Clinic
https://tinyurl.com/yxcg3wzk
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:08:09Biological markers that could guide treatment for prostate cancer
Sphere Fluidics, a company developing single cell analysis systems underpinned by its patented picodroplet technology, and Heriot-Watt University, a specialist, pioneering Scottish University, have been awarded a Knowledge Transfer Partnership (KTP) grant from Innovate UK, the UK’s innovation agency. The grant will facilitate the development of novel droplet generator instrumentation, which will be used to expand Sphere Fluidics’ portfolio of microfluidic instruments for advanced biologics discovery and therapeutic cell line development.
Awarded to promote the collaboration of knowledge, technology and skills within the UK Knowledge Base, the KTP has been granted to Sphere Fluidics, in partnership with Dr. Graeme Whyte, Associate Professor at Heriot-Watt University. The two-year project will develop next-generation intelligent instrumentation and advance research across a range of picodroplet techniques, allowing scientists to discover rare cell phenotypes and to help to solve a range of biological questions ranging from antibody discovery to antimicrobial resistance, enzyme evolution and synthetic biology. The novel platform for semi-automated picodroplet production will be employed by the company to improve control of droplet production, using advanced imaging technology.
As part of the project, Dr. John McGrath has been appointed to Sphere Fluidics’ team as a Research Scientist in physics and engineering, to support the transfer of cutting-edge research into the company’s portfolio of single-cell analysis instruments, including for several new commercial products.
Dr. Marian Rehak, VP of Research and Development at Sphere Fluidics, said: “This innovative project with Heriot-Watt University, will bring together aspects of microfluidic and optical design, technology development and product design engineering to develop a new class of instrument for cell-based picodroplet discovery. We are delighted to have been awarded the KTP Fellowship and to welcome Dr. John McGrath to the Sphere Fluidics team. The work demonstrates the importance of collaboration between academic and industrial partners to support the advancement of novel microfluidic technologies for ground-breaking research.”
Dr. John McGrath, Research Scientist at Sphere Fluidics, commented: “I am thrilled to be working alongside commercial and academic leaders in the research and development of microfluidic instruments and technology. The ease of use and broader application set of the instrument to be developed in this project should lower the barrier to entry for a wide number of scientists, who are focused upon high-throughput screening, synthetic biology, gene editing, and antimicrobial resistance workflows. The technology has the potential to be a key driver in increasing the uptake of picodroplet microfluidic instruments.”
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:07:46Sphere Fluidics, Heriot-Watt University collaborate to develop next generation droplet generator instrumentation
The advent of molecular biology techniques has revolutionized disease diagnosis. CLI discussed with Dr Chandrasekhar Nair from Molbio Diagnostics the benefit that these techniques have brought and how these technologies are being adapted for point-of-care use for rapid diagnosis and the benefit of rural populations.
What has the impact of molecular biology been on disease diagnosis and treatment?
Accurate and timely diagnosis of infectious diseases is essential for proper medical management of patients. Early detection of the causative agent also enables care providers to intervene in a precise rather than presumptive manner and institute adequate measures to interrupt transmission to the susceptible population in the hospital or community.
The conventional diagnostic model for clinical microbiology has been labour and infrastructure intensive and frequently requires days to weeks before test results are available. Moreover, due to the complexity and length of such testing, this service was usually directed at the hospitalized patient population. Bacterial/viral culture has been – and continues to be – the gold standard for detection. However, time taken for some pathogens to grow, coupled with the difficulty in culturing some pathogens has resulted in a demand for alterna tive techniques that would allow direct pathogen detection in clinical samples rapidly.
The application of engineering techniques to the technological revolution in molecular biology has greatly improved the diagnostic capabilities of modern clinical microbiology laboratories. In particular, rapid techniques for nucleic acid amplification and characterization combined with automation and user-friendly software have significantly broadened the diagnostic arsenal. Among the molecular techniques, applicability of PCR-based methods has gained popularity as it allows for rapid detection of unculturable or fastidious microorganisms directly from clinical samples.
Clinical laboratories are increasingly finding utility of molecular techniques in diagnosis and monitoring of disease conditions. Nucleic acid amplification tests are becoming very popular in the diagnosis and management of viral infections [hepatitis B and V viruses (HBV, HCV), human immunodeficiency virus (HIV), influenza virus, etc] because they allow determination of the viral load. In most cases, they are now considered a reference, or gold standard method for diagnostic practices such as screening donated blood for transfusion-transmitted viruses [cytomegalovirus (CMV), HIV, HCV, etc]. Another important case is the use of molecular tests for the detection of the tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis (MTB). Considering the limited sensitivity of smear microscopy, coupled with the steady rise in drug-resistant MTB, rapid molecular tests appear promising.
What are the challenges of implementing molecular diagnostic techniques in developing countries?
For a long time the field of molecular diagnostics has been limited to the domain of large centralized laboratories because of its dependency on complex and expensive infrastructure, highly skilled manpower and special storage conditions. This investment has also resulted in the need for batch testing to make such facilities affordable. As a result, patients and samples need to travel long distances for a test to be conducted and results are delayed, resulting in a loss of follow-up. These factors have led to a concentration of such facilities in urban centres, and poor reach of molecular diagnostics techniques, particularly in low and middle income countries (LMICs). The poor testing rates in the current COVID-19 pandemic are evidence of such dependence on centralized facilities, limiting the ability to test on demand and take appropriate action.
The lack of timely access to good diagnostics resulting in either delayed or inaccurate diagnosis by other methods has been increasingly resulting in spread of disease and poor treatment outcomes.
How can these challenges be overcome?
We need to increase the reach of molecular diagnostics techniques. Given the economic constraints in LMICs, point-of-care technology (POCT) hold a lot of promise and several major global initiatives are devoted to providing such devices. Facilities for testing that can be deployed, set up and run quickly, at affordable costs, with minimal infrastructure requirements and training are critical to the success of the efforts to increase reach. Mobile data coverage, that exists with reasonable density in LMICs, could also be leveraged for better programme management and hotspot detection.
The success of these technologies also depend on uncompromised performance and adherence to quality standards.
Furthermore, designers of POCT devices need to focus on key user requirements which include: (1) simplicity of use; (2) robustness of reagents and consumables; (3) operator safety; and (4) easy maintainability.
What is Molbio Diagnostics doing to meet these demands?
The Truelab® Real Time Quantitative micro PCR System from Molbio Diagnostics brings PCR technology right to the point of care, at all laboratory and non-laboratory settings, primary centres, in the field, near patient – essentially at all levels of healthcare, thereby decentralizing and democratizing access to molecular diagnostics. With a large and growing menu of assays for infectious diseases, this rapid, portable technology enables early and accurate diagnosis and initiation of correct treatment right at the first point of contact. The platform is infrastructure independent and provides complete end-to-end solution for disease diagnosis. With proven ability to work even at primary health centres and with wireless data transfer capability, this game changing technology brings in a paradigm shift to the global fight in control and management of devastating infectious diseases.
Under the aegis of the Council of Scientific and Industrial Research and New Millennium Indian Technology Leadership Initiative partnership, Bigtec Labs (research and development wing of Molbio Diagnostics Pvt. Ltd.) has developed a portable and battery-operated micro PCR system that has since been extensively validated [under the Department of Biotechnology and Indian Council of Medical Research (DBT & ICMR)]. Bigtec has also developed various tests and nucleic acid preparation devices to facilitate ‘sample to result’ molecular diagnostics in resource limited settings. The micro PCR system has since been launched in India through the parent company, Molbio Diagnostics, which has its manufacturing and marketing base in Goa, India.
The system works on disease specific Truenat™ microchips for conducting a real-time PCR. The sample preparation (extraction and purification) is done on a fully automated, cartridge-based Trueprep® AUTO sample prep device. The purified nucleic acids are further amplified on the Truelab® Real Time Quantitative micro PCR System which enables molecular diagnostics for infectious diseases at the point of care.
This compact battery-operated system has single testing capability and provides sample to result within 1 hour. Hence, it enables same-day reporting and initiation of evidence-based treatment for the patient.It also has real-time data transfer capability (through SMS/email) for immediate reporting of results in emergency cases. Physicians benefit from this technology by having a definitive diagnosis, early in the infection cycle, without patients/samples having to travel extensively to centralized facilities.
The Truelab® Real Time Quantitative micro PCR System from Molbio Diagnostics is a cost-effective and sensitive device that can detect diseases accurately with high specificity. The device is battery-operated and portable. This offers the additional advantage of placing the device in almost any kind of laboratory setting, unlike other devices that require uninterrupted power supply, elaborate infrastructure and air-conditioning.
Considering our platform’s potential to perform molecular diagnostics for infectious diseases at the point of care, India has initiated screening for COVID-19 using the Truenat™ Beta CoV test available on the Truelab® Real Time Quantitative micro PCR System. This will allow same-day testing, reporting, and initiation of patient isolation, if required – thereby reducing the risk of infection spreading while waiting for results.
The successful translation of our innovative concept into a product was made possible by Molbio’s multi-disciplinary workforce – with a constant mission to enable better medicine through precise, faster, cost-effective diagnosis at the point of care; to provide every patient access to the best healthcare through cutting edge technologies. Molbio aims to be a leading global player in the point-of-care diagnostics arena by continuing to innovate and bring new technologies for social betterment.
The company is based in India – how does this affect what you do, how is the clinical lab diagnostics industry developing in India and does it create more chances for you?
In India, we have over between 45¦000–50¦000 in vitro diagnostic laboratories – every one of which uses routine conventional diagnostic methods. Only a handful of them have adopted molecular diagnostic testing for reasons mentioned above. But this is changing with the advent of Molbio’s Truelab® platform, with regular standalone laboratories that were, up to now, outsourcing molecular testing, starting to perform the tests themselves. In the short span of a few years, Molbio has established itself as a company focused on making a significant impact in aiding infectious disease diagnostics worldwide with our extensive testing menu.
Our test range covers infectious diseases such as TB, the entire hepatitis range, High risk HPV, H1N1, along with the recent addition of tests for COVID-19, catering to a large population base and addressing diseases with a very significant global mortality percentages. Our rapid test development for Nipah virus and the leptospirosis-causing Leptospira bacteria show our commitment to neglected tropical diseases. Going forward, Molbio will continue to increase the assay range looking at the needs of the global LMIC geography.
The Truenat™ MTB and MTB-RIF tests have started playing a significant role in India’s mission to becoming TB-free by 2025. We would be happy to partner with other National TB Programmes in achieving sustainable development goals well before 2030.
Our vision has always been ‘innovate to have a real impact’ and hence Molbio will continue to bring in newer POCT platforms so that the benefits of science and technology reach the masses. The interviewee Dr Chandrasekhar Nair, BE, PhD, chief technical officer, Molbio Diagnostics
For further information visit Molbio Diagnostics (http://www.molbiodiagnostics.com)
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:07:53Benefits of molecular biology in clinical diagnostics
Precision cancer medicine requires personalized biomarkers to identify patients who will benefit from specific cancer therapies. In an effort to improve the accuracy of predictions about prognosis for patients with breast cancer and the efficacy of personalized therapy, University of North Carolina Lineberger Comprehensive Cancer Center researchers have developed a method to precisely identify individual patients who have aggressive breast cancer. The new approach involves sorting and characterizing invasive breast cancer cells by epigenetic characteristics – a method that involves analysing how particular regulatory proteins interact with DNA to control their expression – as well as by how the genes are amplified or abnormally expressed. The researchers reported that they used this technique to identify potential new prognostic markers to predict distinct clinical outcomes for two major subtypes of breast cancer.
“This paper describes a ground-breaking multi-omics technology to discover drivers of proliferative and invasive breast tumours,” said Xian Chen, PhD, professor in the UNC School of Medicine Department of Biochemistry & Biophysics. “We think that eventually, these tools could help doctors better predict which particular patients have a good response, or acquire resistance to treatment.” Doctors often rely on information about tumour size, whether the cancer has spread and the tumour subtype to make treatment decisions. In addition to clinical subtypes of breast cancer, researchers have discovered molecular subtypes that have been used to help make treatment decisions. However, Chen argues that existing markers do not adequately distinguish breast cancer patient sub-populations with different clinical outcomes.
“Single ‘omics’ approaches, which rely on either genomics, transcriptomics, or proteomics alone, fail to dissect the heterogeneity that contributes to individual patients’ variability in terms of their rates of tumour growth, metastasis, or susceptibility to anti-cancer therapies,” he said. “Because biomarkers are not available to distinguish distinct patient sub-populations that are either responsive or resistant to particular drugs, doctors do not have all the tools they need to predict patient response to treatment and outcomes.”
In their study, the researchers wanted to see if they could stratify patients beyond existing molecular subtypes. Their goal was to develop a method to determine which patients within a single subtype would develop resistance or invasive cancer. There are five major molecular subtypes of breast cancer, which are classified based on how genes are expressed in a tumour.
Chen and his colleagues analysed luminal breast cancer and basal-like breast cancer, which is more commonly known as triple negative breast cancer, using breast cancer samples from two large international studies, The Cancer Genome Atlas and the Molecular Taxonomy of Breast Cancer International Consortium.
To move beyond subtype for identifying exactly which patients might develop resistance, they first sorted the most invasive tumour cells in frozen tissue using a molecular probe that was able to distinguish tumour from adjacent non-malignant cells or tissue by binding to an epigenetic regulator, or a histone methylase, called G9a. This enzyme has been reported by other scientists to be abnormally upregulated in many cancer types, including breast cancer.
They then identified select proteins that were working with G9a as partners-in-crime, and worked backwards from there to identify the genetic abnormalities linked to those partner proteins in the cancer cell. They found in many instances the genes for these interactor proteins were amplified in multiple copies, or abnormally overexpressed, rather than mutated.
“Nowadays, people think somatic mutations of select genes are the primary drivers of tumorigenesis,” Chen said. “We didn’t see many mutations on our identified driver genes. We actually found the genes encoding those interactors have a high frequency amplification in breast cancer patients with poor prognosis.”
They then used this information to generate sets of genes that encoded these “interactor proteins,” and identified those linked to poor prognosis in patients. Looking ahead, Chen and his colleagues plan to determine the specificity and sensitivity of multi-omic aberrations of particular interactor gene sets as new systems biomarkers to predict cancer patient prognosis.
University of Northern Carolina
www.med.unc.edu/biochem/news/
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:31:372021-01-08 11:08:00Researchers develop method for identifying aggressive breast cancer drivers
We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.
Google Analytics Cookies
These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
Other external services
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.
Privacy Beleid
U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.