Beukenlaan 137
5616 VD Eindhoven
The Netherlands
+31 85064 55 82
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
Hereditary hemochromatosis type 1 is a disease of iron overload caused predominantly by a mutation in the homeostatic iron regulator (HFE) gene, p.Cyst282Tyr (p.C282Y). The incidence of the mutation is most common in people of northern European descent – with 1 in 8 people being carriers, making it the most common genetic condition in this population. Approximately 1 in 150 people are homozygotes, although a previous study suggested that only about 1% of homozygotes went on to develop “frank clinical hemochromatosis” involving liver disease. The overload of iron results in iron deposition in the liver, pancreas and joints, causing liver disease (cirrhosis and cancer), fatigue, diabetes and arthritis. Diagnosis if often missed or delayed because of the insidious onset of symptoms that often only become apparent later in life and which can easily be attributed to other causes. Currently, if hemochromatosis is suspected, diagnosis is made by testing for high blood iron levels. Genetic screening is limited only to close family members of hemochromatosis patients because of the suggestion of low general penetrance of the disease. The damaging effects of iron overload can be easily prevented if the disease is diagnosed early enough, largely by withdrawing blood on a regular basis. However, a recent study by Pilling et al. of nearly 500 000 UK Biobank volunteers is changing the way we think about the condition (Pilling LC, et al. Common conditions associated with hereditary haemochromatosis genetic variants: cohort study in UK Biobank. BMJ 2019; 364: k5222). This study involved a far larger number of people than previous studies, as well as involving older people – important for monitoring a disease where the effects are cumulative. The authors found a much higher prevalence of hemochromatosis and associated conditions than expected. Of the p.C282Y homozygous participants, 21.7% of men and 9.8% of women were eventually diagnosed with hemochromatosis. The results of this study have prompted the UK National Screening Committee to announce that it will review the evidence for hemochromatosis screening at its next routine review. However, in the meantime, we are actually in the fortunate position that this disease is easy to test for and easy to treat. No new methodology is needed, but simply a change in pathway, as advocated by Dr Ted Fitzsimons (consultant hematologist at Gartnavel Hospital, Glasgow, UK): if the results of a serum ferritin test are high and the patient is of northern European descent, the blood iron levels should automatically be tested. If this result is also high, then the patient should be screened for hemochromatosis. Many people have a lot to gain from this simple change.
For decades, attempts to biopsy or obtain fluid from eyes with retinoblastoma had been contraindicated, however recent changes in the management of retinoblastoma have allowed for safe sampling of the aqueous humour (AH) during therapy. Use of the AH as a liquid biopsy enables tumour biomarker analysis in these eyes; this has potential to dramatically alter the management of this pediatric cancer.
by Dr Benjamin K. Ghiam, Dr Liya Xu and Dr Jesse L. Berry
Introduction
Retinoblastoma (Rb) is the most common intraocular cancer in children, comprising 4 % of all pediatric malignancies [1, 2]. This potentially fatal malignancy often goes undiagnosed until the tumour is advanced and has damaged intraocular structures. Survival rates for Rb are in excess of 90 % in developed countries, though a critical, and often challenging, focus of Rb therapy is globe and vision preservation [3]. Throughout decades of ocular medicine and surgery, any attempt to biopsy these tumours, or even obtain fluid from Rb eyes had been fervently contraindicated for risk of tumour seeding and dissemination. Thus, much of the diagnosis and management of Rb is dependent on information gathered by the ophthalmologist through careful eye examination, and without histopathologic evidence.
In 2012, Munier et al. described a safety-enhanced protocol for intravitreal chemotherapy injections in the eyes of patients with Rb; this protocol requires an initial paracentesis [4]. As described by the authors of the study, a volume of 0.1 ml of aqueous fluid is aspirated to induce transient hypotony before the intravitreal injection as a safety measure to prevent reflux to the injection site. This protocol for intravitreal injection of chemotherapy has now been widely adopted worldwide and the risk of extraocular spread is considered extremely low (zero reported cases with the safety-enhanced procedure) [5]. This demonstrated safety record paved the way for aqueous humour (AH) extraction in eyes with Rb undergoing active therapy.
AH is the clear intraocular fluid produced by the ciliary processes that fills the front part of the eye (anterior chamber). The AH functions to maintain intraocular pressure, provide nutrients to the cornea, and remove waste products. It has also been shown to be a rich source of information for intraocular disease, including Rb [6]. Researchers have long sought to evaluate AH for the presence of biomarkers which may correlate with features of intraocular disease and provide diagnostic and prognostic value. However, before 2017, any evaluation of the AH was only done on eyes after enucleation. Now that the AH can be safely extracted during therapy, we hypothesized that previous evaluations of AH biomarkers (post-enucleation) may now be clinically applicable for the diagnosis, prognosis and/or management of Rb. This article excerpts our recently published systematic review, titled “Aqueous Humor Biomarkers for Retinoblastoma, a review” in the journal Translational Vision Science and Technology [7].
Lactate dehydrogenase
Lactate dehydrogenase (LDH) is an enzyme found in nearly all cells that acts as a regulator of metabolism; it has been used clinically as a non-specific marker found within body fluids in various pathological conditions, including malignant tumours.
In the early 1970s, Dias et al. examined LDH levels in the AH from enucleated Rb eyes [8]. Early reports demonstrated a significant increase in the levels of LDH within the AH of enucleated eyes with Rb when compared to patients without Rb, such that levels >1000 U/L strongly support the diagnosis of Rb (Table 1). Multiple studies on LDH levels in the AH from enucleated eyes were done between the years 1971 and 2008 which found that LDH levels were significantly elevated compared to controls, and more elevated in advanced eyes with delayed diagnosis; however, these levels did not correlate with other clinical features or outcomes. Elevation in AH LDH have been described in patients with other ocular conditions, including primary open angle glaucoma and Coats’ disease. Although LDH was the first described marker of tumour activity in the AH, the lack of specificity and correlation with patient or tumour features limits its use clinically. Owing to this lack of correlation this research was previously abandoned.
Enolase/neuron-specific enolase
Neuron-specific enolase (NSE) is an isoenzyme of the glycolytic enzyme enolase; it is highly specific for neurons and peripheral neuroendocrine cells. Increased body fluid levels of NSE occur with malignant proliferation and thus have been of value in the diagnosis and characterization of neuroendocrine tumours, including small cell lung cancer and retinoblastoma [9].
Evaluation of the isoenzyme patterns of enolase in the AH of enucleated Rb eyes demonstrated that NSE levels were elevated in AH Rb, whereas enolase was not detectable in the AH from controls (Table 1) [10–12]. Elevated levels of NSE significantly correlated with inflammation and tumour invasion into the anterior chamber [13]. NSE levels did not correlate with histological tumour parameters (tumour necrosis, calcification, optic nerve/choroidal invasion) as well as clinicopathological parameters (sex, enucleation age, presentation age, family history, previous treatment, and metastatic disease). Moreover, NSE levels were found to be within the control range in children more than 5 years after active therapy [14]. This suggests that NSE may be used clinically to indicate remission status. Although obtaining serial AH NSE measurements may have a significant role in determining tumour status in Rb patients in the future, additional evidence is required to further substantiate the use of this tumour marker clinically.
Surviving and transforming growth factor beta-1
Survivin is a protein that inhibits apoptosis. It has garnered significant interest as a diagnostic and prognostic factor in human neoplasms, including Rb. Elevated survivin levels are found in many human neoplasms, and it is used as a prognostic factor in several human neoplasms, including lung and colorectal cancers [15, 16]
Survivin expression in the AH from enucleated eyes of children with Rb was found to be significantly elevated, when compared to patients with non-malignant ophthalmic disease, such as congenital cataracts and glaucoma [17, 18]. AH survivin levels correlated with tumour stage and histopathologic post laminar optic nerve involvement.
Transforming growth factor beta-1 (TGF-β1) expression in the AH of enucleated Rb eyes was associated with poor differentiation of the tumour [17]. The authors demonstrated high sensitivity and specificity of these AH proteins which makes them promising markers for Rb, particularly of more aggressive pathologic features.
Uric acid and xanthine
During cell turnover, nucleic acids and nucleotides are degraded into xanthine and uric acid. Elevated levels of serum uric acid have been associated with many malignancies, as well as after rapid destruction such as after treatment with chemotherapy or radiation.
Elevated concentrations of uric acid and xanthines were found in the AH of children with Rb compared with control eyes (Table 1) [19]. Elevated levels of xanthine and uric acid in AH may support the diagnosis of Rb in children suspected of having the disease, however further studies are necessary to establish optimal cut-offs, explore clinicopathological correlations, and compare Rb levels to lesions simulating Rb (Coats’ disease and persistent fetal vasculature).
Protein content
Normally, the AH is virtually protein-free to ensure a clear optical media between the cornea and the lens. An increase in globulin content and an albumin/globulin ratio < 1 has been found in enucleated eyes with Rb [20]. Concentrations of interleukin (IL)-6, IL-7, IL-8, interferon gamma (IFN-γ), placental growth factor 1 (PlGF-1), vascular endothelial growth factor A (VEGF-A), beta-nerve growth factor (β-NGF), hepatocyte growth factor (HGF), epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF-2) were significantly higher in the AH of patients with Rb than those in the control group [21]. Additionally, significantly decreased protein concentration was demonstrated in Rb eyes following treatment with selective intra-arterial chemotherapy (melphalan injection in the ophthalmic artery) that were subsequently enucleated after attempts at salvage, compared to primarily enucleated eyes [22].
Nucleic acids
Recent studies from Berry et al. demonstrated the presence of tumour-derived nucleic acids (DNA, RNA, miRNA) in the AH of Rb eyes [23]. Because of this, the authors suggest that the AH may be a rich source of tumour DNA and, thus, could be used as a liquid biopsy in children with Rb, without undergoing enucleation. A subsequent analysis by Berry et al. in 2018 showed that evaluation of the cell-free DNA (cfDNA) in the AH for chromosomal alterations has potential prognostic value as in indicator of aggressive disease [24]. Specifically, there was a significant increased odds of an eye failing therapy and requiring enucleation due to persistent and/or progressive cancer activity if gain of chromosome 6p was found in the AH cfDNA. Further research is required before this can be applied clinically, however this holds potential as a prognostic biomarker for Rb.
Conclusion
Despite significant investigation into tumour biomarkers for Rb spanning more than four decades, currently there are no active uses for the AH in a clinical setting. Diagnosis is made on the basis of examination and ancillary imaging findings without a biopsy, and molecular tumour markers are presently not used for diagnosis, prognosis, or to monitor therapeutic response. This is due in large part to the contraindication to biopsy in Rb; therefore, previously neither tumour nor AH or other ocular fluids were evaluated outside of specimens from enucleated eyes; clearly this limited the ability to correlate these markers with meaningful clinical outcomes. However, with recent advances in local therapy for Rb, paracentesis with extraction of the AH has now been shown to be safe in eyes being actively treated. This opens the door to for an AH liquid biopsy and thus there is renewed interest in these potential disease biomarkers.
Acknowledgement
This article excerpts our recently published systematic review, titled “Aqueous Humor Biomarkers for Retinoblastoma, a review” in the journal Translational Vision Science and Technology [7].
References
1. Shields, JA. Management and prognosis of retinoblastoma. In: Intraocular tumors: a text and atlas, pp377–391. WB Saunders 1992. ISBN 978-0721642680.
2. Shields JA, Shields CL. Intraocular tumors: an atlas and textbook, p574. Lippincott Williams & Wilkins 2008. ASIN B00XWR8WM6.
3. Pavan-Langston D. Manual of ocular diagnosis and therapy, p533. Lippincott Williams & Wilkins 2008. ISBN 978-0781765121.
4. Munier FL, Soliman S, Moulin AP, et al. Profiling safety of intravitreal injections for retinoblastoma using an anti-reflux procedure and sterilisation of the needle track. Br J Ophthalmol 2012; 96(8): 1084–1087.
5. Smith SJ, Smith BD, Mohney BG. Ocular side effects following intravitreal injection therapy for retinoblastoma: a systematic review. Br J Ophthalmol 2013; 98(3): 292–297.
6. Macknight AD, McLaughlin CW, Peart D, et al. Formation of the aqueous humor. Clin Exp Pharmacol Physiol 2000; 27(1-2): 100–106.
7. Ghiam BK, Xu L, Berry JL. Aqueous humor markers in retinoblastoma, a review. Transl Vis Sci Technol 2019; 8(2): 13.
8. Dias PL, Shanmuganathan SS, Rajaratnam M. Lactic dehydrogenase activity of aqueous humour in retinoblastoma. Br J Ophthalmol 1971; 55(2): 130–132.
9. Kivelä T. Neuron-specific enolase in retinoblastoma. Acta Ophthalmol 2009; 64(1): 19–25.
10. Wu Z, Yang H, Pan S, et al. Electrophoretic determination of aqueous and serum neuron-specific enolase in the diagnosis of retinoblastoma. Yan Ke Xue Bao 1997; 13(1): 12–16.
11. Shine BS, Hungerford J, Vaghela B, et al. Electrophoretic assessment of aqueous and serum neurone-specific enolase in retinoblastoma and ocular malignant melanoma. Br J Ophthalmol 1990; 74(7): 427–430.
12. Nakajima T, Kato K, Kaneko A, et al. High concentrations of enolase, alpha- and gamma-subunits, in the aqueous humor in cases of retinoblastoma. Am J Ophthalmol 1986; 101(1): 102–106.
13. Abramson DH, Greenfield DS, Ellsworth RM, et al. Neuron-specific enolase and retinoblastoma. Clinicopathologic correlations. Retina 1989; 9(2): 148–152.
14. Comoy E, Roussat B, Henry I, et al. Neuron-specific enolase in the aqueous humor. Its significance in the differential diagnosis of retinoblastoma Ophtalmologie 1990; 4(3): 233–235 [in French].
15. Andersen MH, Svane IM, Becker JC, et al. The universal character of the tumor-associated antigen survivin. Clin Cancer Res 2007; 13(20): 5991–5994.
16. Rohayem J, Diestelkoetter P, Weigle B, et al. Antibody response to the tumor-associated inhibitor of apoptosis protein survivin in cancer patients. Cancer Res 2000; 60(7): 1815–1817.
17. Shehata HH, Abou Ghalia AH, Elsayed EK, et al. Clinical significance of high levels of survivin and transforming growth factor beta-1 proteins in aqueous humor and serum of retinoblastoma patients. J AAPOS 2016; 20(5): 444.e1–444.e9.
18. Shehata HH, Abou Ghalia AH, Elsayed EK, Z et al. Detection of survivin protein in aqueous humor and serum of retinoblastoma patients and its clinical significance. Clin Biochem 2010; 43(4-5): 362–366.
19. Mendelsohn ME, Abramson DH, Senft S, et al. Uric acid in the aqueous humor and tears of retinoblastoma patients. J AAPOS 1998; 2(6): 369–371.
20. Dias PL. Postinflammatory and malignant protein patterns in aqueous humour. Br J Ophthalmol 1979; 63(3): 161–164.
21. Cheng Y, Zheng S, Pan C-T, et al. Analysis of aqueous humor concentrations of cytokines in retinoblastoma. PLoS One 2017; 12(5): e0177337.
22. Hadjistilianou T, Giglioni S, Micheli L, et al. Analysis of aqueous humour proteins in patients with retinoblastoma. Clin Experiment Ophthalmol 2012; 40(1): e8–15.
23. Berry JL, Xu L, Murphree AL, et al. Potential of aqueous humor as a surrogate tumor biopsy for retinoblastoma. JAMA Ophthalmol 2017; 135(11): 1221–1230.
24. Berry JL, Xu L, Kooi I, et al. Genomic analysis of aqueous humor cell-free dna in retinoblastoma predicts eye salvage: the surrogate tumor biopsy for retinoblastoma. Mol Cancer Res 2018; 16: 1701–1712.
25. Kabak J, Romano PE. Aqueous humour lactic dehydrogenase isoenzymes in retinoblastoma. Br J Ophthalmol 1975; 59(5): 268–269.
26. Piro PA Jr, Abramson DH, Ellsworth RM, et al. Aqueous humor lactate dehydrogenase in retinoblastoma patients. Clinicopathologic correlations. Arch Ophthalmol 1978; 96(10): 1823–1825.
27. Abramson DH, Piro PA, Ellsworth RM, et al. Lactate dehydrogenase levels and isozyme patterns. Measurements in the aqueous humor and serum of retinoblastoma patients. Arch Ophthalmol 1979; 97(5): 870–871.
28. Dias PL. Correlation of aqueous humour lactic acid dehydrogenase activity with intraocular pathology. Br J Ophthalmol 1979; 63(8): 574–577.
29. Dias PL. Prognostic significance of aqueous humour lactic dehydrogenase activity. Br J Ophthalmol 1979; 63(8): 571–573.
30. Das A, Roy IS, Maitra TK. Lactate dehydrogenase level and protein pattern in the aqueous humour of patients with retinoblastoma. Can J Ophthalmol 1983; 18(7): 337–339.
31. Dias PL. Electrolyte imbalances in the aqueous humour in retinoblastoma. Br J Ophthalmol 1985; 69(6): 462–463.
32. Dayal Y, Goyal JL, Jaffery NF, et al. Lactate dehydrogenase levels in aqueous humor and serum in retinoblastoma. Jpn J Ophthalmol 1985; 29(4): 417–422.
33. Singh R, Kaurya OP, Shukla PK, et al. Lactate dehydrogenase (LDH) isoenzymes patterns in ocular tumours. Indian J Ophthalmol 1991; 39(2): 44–47.
34. Mukhopadhyay S, Ghosh S, Biswas PN, et al. A cross-sectional study on aqueous humour lactate dehydrogenase level in retinoblastoma. J Indian Med Assoc 2008; 106(2): 99–100.
35. Cheng Y, Meng Q, Huang L, et al. iTRAQ-based quantitative proteomic analysis and bioinformatics study of proteins in retinoblastoma. Oncol Lett 2017; 14(6): 8084–8091.
36. Cheng Y, Zheng S, Pan C-T, et al. Analysis of aqueous humor concentrations of cytokines in retinoblastoma. PLoS One 2017; 12(5): e0177337.
The authors
Benjamin K. Ghiam1 MD, Liya Xu2 PhD, Jesse L. Berry, MD*3,4 MD
1Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
2Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
3The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA, USA
4USC Roski Eye Institute, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
*Corresponding author
E-mail: Jesse.Berry@med.usc.edu
Mesothelioma is a fatal cancer of mesothelial cells caused by previous asbestos exposure. Numerous biomarkers have been tested for their ability to diagnose or monitor pleural mesothelioma, but none are in routine clinical practice. This article aims to briefly outline the literature to date and future research directions.
by Dr David T. Arnold and Prof. Nick A. Maskell
Introduction
Mesothelioma is a cancer of mesothelial cells that carries a very poor prognosis. It is almost exclusively caused by previous inhalation of asbestos fibres, which is usually through industrial employments (ship building, lagging, railway work, etc) or from working on pre-existing asbestos products (plumbing, carpentry, etc). Given there is a 40-year mean latency from exposure to presentation, the European incidence of mesothelioma is expected to rise until around 2020, in keeping with the use and subsequent banning of asbestos in the 1980s [1]. However, given ongoing unregulated use of asbestos in China, India and Russia, cases of mesothelioma will continue to occur worldwide.
Mesothelioma can occur in the pleural cavity and peritoneum (with a 4 : 1 ratio) and more rarely in the pericardium and tunica vaginalis. Malignant pleural mesothelioma (MPM) is the most common with around 2500 new cases in the UK every year and will form the basis of the rest of this review [2].
Survival from MPM is dependent on histological subtype, of which there are four: epithelioid, sarcomatoid, biphasic and desmoplastic. Epithelioid accounts for 70 % of the overall cases and has the best prognosis, with a median survival of 13–14 months. Sarcomatoid has the worst prognosis, at 4 months, and is usually felt by clinicians to be not amenable to therapy.
Presentation
The main symptoms from MPM are shortness of breath, cough and chest pain. Given that it is a highly metabolically active tumour, patients can also develop systemic symptoms of fevers/sweats, fatigue and weight loss, indicating a more advanced stage. Around 90 % of individuals with MPM present with a pleural effusion (fluid collection around the lung), and any male with a history of asbestos exposure and a unilateral effusion has a 60 % of having malignancy [3]. MPM is highly locally invasive, which can cause chest pain, but rarely metastasises unless the pleura is disrupted by diagnostic or therapeutic procedures, which can cause tract metastases.
Diagnosis and imaging
Patients who present with a pleural effusion will invariably have cytological analysis of the fluid first. However, pleural fluid cytology alone is not usually sufficient to make a diagnosis of MPM [3]. If the patient is well enough then a biopsy is performed either radiologically, via medical thoracoscopy or surgically. These procedures are invasive, so there has been significant interest in additional diagnostic methods.
The mainstay of radiological investigations is computerised tomography (CT), with magnetic resonance imaging and positron emission tomography (PET) currently limited to the research setting. However, differentiating MPM from benign pleural thickening or other pleural malignancies is unreliable using CT alone [2]. Given the drawbacks in current cytopathological and radiological investigations for MPM there is a huge potential role for serum or pleural fluid biomarkers. Biomarkers would allow earlier detection of malignancy in at-risk groups (e.g. the asbestos exposed), reduce the need for invasive biopsies and speed the diagnostic pathway to treatment.
Treatment and monitoring
Sadly, due to the highly invasive nature of MPM, treatment is often palliative from diagnosis. The current standard of care is based on the results of a non-placebo-controlled trial from 2003. Vogelzang and colleagues used a combination of pemetrexed (an anti-folate) and cisplatin (platinum-based agent) chemotherapy [4]. This combination adds a modest 2 months to overall survival, with a response rate of only 30 %. Treatment for MPM had not significantly advanced until the publication of the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS) trial in 2015, which showed a 2-month survival advantage when bevacizumab [an anti-vascular endothelial growth factor (VEGF) immunotherapy] was added to standard chemotherapy [5].
The role of surgery for MPM is highly controversial, with significant variation in operative rates internationally. This controversy exists because there are no randomised trials of radical surgical intervention against best medical therapy. Large case series of patients with positive surgical outcomes exist, but they are often highly selective of younger patients with good performance status.
Both chemotherapeutic and surgical management would benefit from a greater ability to prognosticate patients at baseline and assess response to treatment. Currently, serial CT scanning is the gold standard of disease monitoring in MPM. Similar to other malignancies an attempt to measure change in tumour is made using the RECIST criteria. However, unlike other malignancies, MPM grows as a rind around the chest wall so volume measurement is difficult. A modified RECIST criteria has been developed, but is time intensive, and, with the added complications of pleural fluid and plaques, is rarely used outside the research setting. Other radiological methods to monitor disease have been examined, with a recognition that biomarkers would be ideal as a method of monitoring disease in a non-invasive manner [6].
Mesothelin
Soluble mesothelin (SM) is a 40 kDa glycoprotein over-expressed by the epithelioid component of malignant mesothelial cells. Its exact biological role remains uncertain. Discovered in the serum of patients with ovarian cancer, it was subsequently found in serum, pleural fluid and urine of patients with MPM. See Figure 1 in the open access article by Hassan et al. for a schematic showing the maturation and structure of mesothelin [7].
There has been considerable research attention on its utility in diagnosis or monitoring MPM. The majority of these studies have used a commercial platform, the Mesomark® ELISA. Unfortunately, despite some positive initial signals, a meta-analysis by Cui and colleagues in 2014 demonstrated that the overall sensitivity for detecting MPM was 0.61 in serum and 0.79 in pleural fluid [8]. The level of SM rises with increased epithelioid disease bulk, and, therefore, can be low in early-stage disease and may never rise in sarcomatoid or desmoplastic subtypes. For a diagnosis with such profound consequences for the individual, as well as medico-legal implications, this inability to reliably detect MPM has limited its widespread diagnostic use.
More recent research has focused on its ability to monitor MPM during treatment or follow-up (Table 1).
Although there is considerable heterogeneity between these 10 studies in terms of primary outcome measures, each has demonstrated that a rising SM is correlated with clinical or radiological disease progression. A falling SM following chemotherapy or surgery was strongly indicative of treatment response. The future of SM in disease monitoring depends on the results of currently recruiting prospective trials.
Fibulin-3
Fibulin-3 is a glycoprotein that promotes tumour growth and invasion through the phosphorylation of epidermal growth factor. In 2012, the New England Journal of Medicine published the results of a landmark study which reported that serum fibulin-3 had a 100 % sensitivity for detecting early-stage MPM [9]. Unfortunately, several follow-up studies using the same commercial ELISA have been unable to replicate these results. Ren and colleagues published a meta-analysis of eight studies which found the sensitivity to be around 87 % with a specificity of 89 % [10].
Osteopontin
Osteopontin is over-expressed in several malignancies and several studies have focused on its prognostic abilities in MPM. Early studies used serum osteopontin, without appreciating the impact of its thrombin cleavage site on results. More recent studies have used more accurate plasma measurement and shown that osteopontin has no role in diagnosis or monitoring [11]. Interestingly, there is evidence that baseline osteopontin is a marker of poor prognosis, independent of histology, treatment modality or other biomarkers.
Vascular Endothelial Growth Factor (VEGF)
VEGF has been studied as a potential diagnostic or therapeutic target in MPM. Although baseline VEGF correlates with disease stage and survival it is not used in the clinical setting. However, following the publication of the MAPS trial (of the anti-VEGF immunotherapy bevacizumab) there has been a renewed focus on whether baseline VEGF can select responders from non-responders. These studies have been directed at pan-VEGF, as opposed to any specific isoform, and have not shown any definitive role to date.
Proteomic studies
A modern approach to biomarker discovery and validation is exemplified by the DIAPHRAGM study [12]. Tsim and colleagues took the results of a promising 13-protein diagnostic panel developed and internally validated by Ostroff [12]. The internal validation cohort had reported an area under curve (AUC) for detecting MPM of 0.95 (38 patients with MPM). A flaw of previous biomarker validation is that follow-up work is performed on small retrospective cohorts. It often takes several years or decades before the true utility of the biomarker is established. The DIAPHRAGM study aims to quickly and definitively validate or reject the SOMAscan assay, alongside fibulin-3, in a prospective, powered and clinically relevant manner. The final results of the research are awaited, but regardless, this approach has set a standard for biomarker discovery and validation in MPM.
Summary
MPM is a highly aggressive cancer that is difficult to diagnose and monitor. The potential scope for biomarkers is huge. Serum SM has shown the most promise in monitoring disease. A biomarker that can reliably diagnose early-stage MPM remains elusive.
References
1. Robinson BW, Lake RA. Advances in malignant mesothelioma. N Engl J Med 2005; 353: 1591–1603.
2. Woolhouse I, Bishop L, Darlison L, de Fonseka D, Edey A, Edwards J, Faivre-Finn C, Fennell DA, Holmes S, et al. BTS guideline for the investigation and management of malignant pleural mesothelioma. BMJ Open Respir Res 2018; 5(1): e000266.
3. Arnold DT, De Fonseka D, Perry S, Morley A, Harvey JE, Medford A, Brett M, Maskell NA. Investigating unilateral pleural effusions: the role of cytology. Eur Respir J 2018; 52(5): pii: 1801254.
4. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, Gatzemeier U, Boyer M, Emri S, Manegold C, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 2003; 21(14): 2636–2644.
5. Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, Molinier O, Corre R, Monnet I, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 2016; 387(10026): 1405–1414.
6. Hooper CE, Lyburn ID, Searle J, Darby M, Hall T, Hall D, Morley A, White P, Rahman NM, et al. The South West Area Mesothelioma and Pemetrexed trial: a multicentre prospective observational study evaluating novel markers of chemotherapy response and prognostication. Br J Cancer 2015; 112(7): 1175–1182.
7. Hassan R, Bera T, Pastan I. Mesothelin: a new target for immunotherapy. Clin Cancer Res 2004; 10(12 Pt 1): 3937–3942 (http://clincancerres.aacrjournals.org/content/10/12/3937.long).
8. Cui A, Jin XG, Zhai K, Tong ZH, Shi HZ. Diagnostic values of soluble mesothelin-related peptides for malignant pleural mesothelioma: updated meta-analysis. BMJ Open 2014; 4(2): e004145.
9. Pass HI, Levin SM, Harbut MR, Melamed J, Chiriboga L, Donington J, Huflejt M, Carbone M, Chia D, et al. Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med 2012; 367(15): 1417–1427.
10. Ren R, Yin P, Zhang Y, Zhou J, Zhou Y, Xu R, Lin H, Huang C. Diagnostic value of fibulin-3 for malignant pleural mesothelioma: A systematic review and meta-analysis. Oncotarget 2016; 7(51): 84851–84859.
11. Lin H, Shen YC, Long HY, Wang H, Luo ZY, Wei ZX, Hu SQ, Wen FQ. Performance of osteopontin in the diagnosis of malignant pleural mesothelioma: a meta-analysis. Int J Clin Exp Med 2014; 7(5): 1289–1296.
12. Tsim S, Kelly C, Alexander L, McCormick C, Thomson F, Woodward R, Foster JE, Stobo DB, Paul J et al. Diagnostic and Prognostic Biomarkers in the Rational Assessment of Mesothelioma (DIAPHRAGM) study: protocol of a prospective, multicentre, observational study. BMJ Open 2016; 6(11): e013324.
13. de Fonseka D, Arnold DT, Stadon L, Morley A, Keenan E, Darby M, Armstrong L, Virgo P1, Maskell NA. A prospective study to investigate the role of serial serum mesothelin in monitoring mesothelioma. BMC Cancer 2018; 18(1): 199.
14. Bonotti A, Simonini S, Pantani E, Giusti L, Donadio E, Mazzoni MR, Chella A, Marconi L, Ambrosino N, et al. Serum mesothelin, osteopontin and vimentin: useful markers for clinical monitoring of malignant pleural mesothelioma. Int J Biol Markers 2017; 32(1):e126–e131.
15. Hassan R, Sharon E, Thomas A, Zhang J, Ling A, Miettinen M, Kreitman RJ, Steinberg SM, Hollevoet K, Pastan I. Phase 1 study of the antimesothelin immunotoxin SS1P in combination with pemetrexed and cisplatin for front-line therapy of pleural mesothelioma and correlation of tumor response with serum mesothelin, megakaryocyte potentiating factor, and cancer antigen 125. Cancer 2014; 120: 3311–3319.
16. Nowak AK, Brown C, Millward MJ, Creaney J, Byrne MJ, Hughes B, Kremmidiotis G, Bibby DC, Leske AF, et al. A phase II clinical trial of the vascular disrupting agent BNC105P as second line chemotherapy for advanced malignant pleural mesothelioma. Lung Cancer 2013; 81: 422–427.
17. Franko A, Dolzan V, Kovac V, Arneric N, Dodic-Fikfak M. Soluble mesothelin-related peptides levels in patients with malignant mesothelioma. Dis Markers 2012; 32: 123–131.
18. Hollevoet K, Nackaerts K, Gosselin R, De Wever W, Bosquée L, De Vuyst P, Germonpré P, Kellen E, Legrand C, et al. Soluble mesothelin, megakaryocyte potentiating factor, and osteopontin as markers of patient response and outcome in mesothelioma. J Thorac Oncol 2011; 6: 1930–1937.
19. Creaney J, Francis RJ, Dick IM, Musk AW, Robinson BW, Byrne MJ, Nowak AK. Serum soluble mesothelin concentrations in malignant pleural mesothelioma: relationship to tumor volume, clinical stage and changes in tumor burden. Clin Cancer Res 2011; 17: 1181–1189.
20. Wheatley-Price P, Yang B, Patsios D, Patel D, Ma C, Xu W, Leighl N, Feld R, Cho BC, et al. Soluble mesothelin-related Peptide and osteopontin as markers of response in malignant mesothelioma. J Clin Oncol 2010; 28: 3316–3322.
21. Grigoriu BD, Chahine B, Vachani A, Gey T, Conti M, Sterman DH, Marchandise G, Porte H, Albelda SM, Scherpereel A. Kinetics of soluble mesothelin in patients with malignant pleural mesothelioma during treatment. Am J Respir Crit Care Med 2009; 179: 950–954.
The authors
David T. Arnold* MBBCh, BSc, MRCP and Nick A. Maskell BMedSci, BM, BS, FRCP, DM, FCCP
Academic Respiratory Unit, Learning and Research Building, Southmead Hospital, Bristol, UK
*Corresponding author
E-mail: arnold.dta@gmail.com
November 2024
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Beukenlaan 137
5616 VD Eindhoven
The Netherlands
+31 85064 55 82
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy