Major global study reveals new hypertension and blood pressure genes
Thirty-one new gene regions linked with blood pressure have been identified in one of the largest genetic studies of blood pressure to date, involving over 347,000 people, and jointly led by Queen Mary University of London (QMUL) and the University of Cambridge.
The discoveries include DNA changes in three genes that have much larger effects on blood pressure in the population than previously seen, providing new insights into the physiology of hypertension and suggesting new targets for treatment.
High blood pressure or hypertension is a major risk factor for cardiovascular disease and premature death. It is estimated to be responsible for a larger proportion of global disease burden and premature mortality than any other disease risk factor. However, there is limited knowledge on the genetics of blood pressure.
The teams investigated the genotypes of around 347,000 people and their health records to find links between their genetic make-up and cardiovascular health. The participants included healthy individuals and those with diabetes, coronary artery disease and hypertension, from across Europe (including the UK, Denmark, Sweden, Norway, Finland and Estonia), the USA, Pakistan and Bangladesh. The study brought together around 200 investigators from across 15 countries.
Study author Professor Patricia Munroe from QMUL said:
“We already know from earlier studies that high blood pressure is a major risk factor for cardiovascular disease. Finding more genetic regions associated with the condition allows us to map and understand new biological pathways through which the disease develops, and also highlight potential new therapeutic targets. This could even reveal drugs that are already out there but may now potentially be used to treat hypertension.”
Most genetic blood pressure discoveries until now have been of common genetic variants that have small effects on blood pressure. The study, published in Nature Genetics, has found variants in three genes that appear to be rare in the population, but have up to twice the effect on blood pressure.
Study author, Dr Joanna Howson from the University of Cambridge said:
“The sheer scale of our study has enabled us to identify genetic variants carried by less than one in a hundred people that affect blood pressure regulation. While we have known for a long time that blood pressure is a risk factor for coronary heart disease and stroke, our study has shown that there are common genetic risk factors underlying these conditions.”
Queen Mary University of London www.whri.qmul.ac.uk/about-us/whri-news/94-news/627-major-global-study-reveals-new-hypertension-and-blood-pressure-genes