Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Experimental blood test spots recurrent breast cancers and monitors response to treatment

, 26 August 2020/in E-News /by 3wmedia

Johns Hopkins Kimmel Cancer Center investigators report they have designed a blood test that accurately detects the presence of advanced breast cancer and also holds promise for precisely monitoring response to cancer treatment.
The test, called the cMethDNA assay, accurately detected the presence of cancer DNA in the blood of patients with metastatic breast cancers up to 95 percent of the time in laboratory studies.
Currently, there is no useful laboratory test to monitor patients with early stage breast cancer who are doing well, but could have an asymptomatic recurrence, says Saraswati Sukumar, Ph.D., who is the Barbara B. Rubenstein Professor of Oncology and co-director of the Breast Cancer Program at the Johns Hopkins Kimmel Cancer Center. Generally, radiologic scans and standard blood tests are indicated only if a woman complains of symptoms, such as bone aches, shortness of breath, pain, or worrisome clinical exam findings. Otherwise, routine blood tests or scans in asymptomatic patients often produce false positives, leading to additional unnecessary tests and biopsies, and have not been shown to improve survival outcomes in patients with early stage breast cancer who develop a recurrence.
Sukumar, also a professor of pathology at Johns Hopkins, says that the current approach to monitoring for recurrence is not ideal, and that ‘the goal is to develop a test that could be administered routinely to alert the physician and patient as soon as possible of a return of the original cancer in a distant spot. With the development of cMethDNA, we’ve taken a first big step toward achieving this goal.’
To design the test, Sukumar and her team scanned the genomes of primary breast cancer patients, as well as DNA from the blood of metastatic cancer patients. They selected 10 genes specifically altered in breast cancers, including newly identified genetic markers AKR1B1, COL6A2, GPX7, HIST1H3C, HOX B4, RASGRF2, as well as TM6SF1, RASSF1, ARHGEF7, and TMEFF2, which Sukumar’s team had previously linked to primary breast cancer.
The test, developed by Sukumar, collaborator Mary Jo Fackler, Ph.D., and other scientists, detects so-called hypermethyation, a type of chemical tag in one or more of the breast cancer-specific genes present in tumour DNA and detectable in cancer patients’ blood samples. Hypermethylation often silences genes that keep runaway cell growth in check, and its appearance in the DNA of breast cancer-related genes shed into the blood indicates that cancer has returned or spread.
In one set of experiments, the researchers tested the assay’s ability to detect methylated tumor DNA in 52 blood samples – 24 from patients with recurrent stage IV breast cancer and 28 from healthy women without breast cancer, and again in blood samples from 60 individuals – 33 from women with all stages of breast cancer and 27 from healthy women. In each case, the blood test was up to 95 percent accurate in distinguishing patients with metastatic breast cancer from healthy women.
The investigators also studied the assay’s potential to monitor response to chemotherapy. They evaluated 58 blood samples from 29 patients with metastatic breast cancer, some taken before the initiation of therapy and some taken 18 to 49 days after starting a new chemotherapy regimen. In as little as two weeks, they report, the test detected a significant decrease in DNA methylation in patients with stable disease or in those who responded to treatment; this decrease was not found in patients whose disease progressed or who did not respond to treatment.
‘Our assay shows great potential for development as a clinical laboratory test for monitoring therapy and disease progression and recurrence,’ Sukumar says. If it’s determined early that a treatment is not working, clinicians can save time and switch to a different therapy, she says.
In addition, the researchers tested the gene panel used in the cMethDNA assay against samples from The Cancer Genome Atlas, a catalog of genes in various cancer types, finding that the gene panel may also be useful in detecting recurrent lung or colorectal cancers but not as accurate in detecting recurrent ovarian, kidney or stomach cancers. Johns Hopkins Kimmel Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:04Experimental blood test spots recurrent breast cancers and monitors response to treatment

Researchers identify novel marker and possible therapeutic target for cardiovascular calcification

, 26 August 2020/in E-News /by 3wmedia

Cardiovascular calcification (deposits of minerals in heart valves and blood vessels) is a primary contributor to heart disease, the leading cause of death among both men and women in the United States according the Centers for Disease Control and Prevention (CDC).
‘Unfortunately, there currently is no medical treatment for cardiovascular calcification, which can lead to acute cardiovascular events, such as myocardial infarction and stroke, as well as heart failure,’ says Elena Aikawa, MD, PhD, Director of the Vascular Biology Program at the Center for Interdisciplinary Cardiovascular Sciences at Brigham and Women’s Hospital (BWH) and Associate Professor of Medicine at Harvard Medical School. ‘We have not found a way to reverse or slow this disease process, which is associated with ageing and common chronic conditions like atherosclerosis, diabetes, and kidney disease.’
Led by Dr. Aikawa, a team of researchers at BWH and Kowa Company, Ltd., a Japanese pharmaceutical company, has discovered certain proteins in osteoclasts, a precursor to bone, that may be used in helping to destroy cardiovascular calcification by dissolving mineral deposits. The research suggests a potential therapeutic avenue for patients with cardiovascular calcification.
Mature osteoclasts are not typically found in the vasculature. Using unbiased global proteomics (study of proteins), the researchers were able to examine osteoclast-like cells in the vasculature to determine which proteins induced osteoclast formation. They identified more than 100 proteins associated with osteoclast development. Follow-up study validated six candidate proteins, which serve as targets for possible medications that may help promote osteoclast development in the vasculature.
‘To advance this research, we need to further understand why osteoclasts are not prevalent in the vaculature, despite active calcification of the heart valves and blood vessels, and determine the difference between calcification in vasculature compared with calcification in bone,’ said Dr. Aikawa. ‘Then, we may examine ways to form osteoclasts in the vasculature.’ Brigham and Women’s Hospital

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:11Researchers identify novel marker and possible therapeutic target for cardiovascular calcification

Gene-silencing data now publicly available to help scientists better understand disease

, 26 August 2020/in E-News /by 3wmedia

For the first time, large-scale information on the biochemical makeup of small interfering RNA (siRNA) molecules is available publicly. These molecules are used in research to help scientists better understand how genes function in disease. Making these data accessible to researchers worldwide increases the potential of finding new treatments for patients.
NIH’s National Center for Advancing Translational Sciences (NCATS) collaborated with Life Technologies Corporation of Carlsbad, Calif., which owns the siRNA information, to make it available to all researchers.
RNA interference(RNAi), a cellular process that can stop specific proteins from being coded by silencing the genes that produce them.
The siRNA molecules, which can selectively inhibit the activity of genes, are used in RNA interference (RNAi) research. RNAi is a natural process that cells use to control the activity of specific genes. Its discovery led to the 2006 Nobel Prize in Physiology or Medicine.
Last month, a team of NIH scientists, led by Richard Youle, Ph.D., at the National Institute of Neurological Disorders and Stroke (NINDS), and Scott Martin, Ph.D., at NCATS, used RNAi to find genes that linked to Parkinson’s disease, a devastating movement disorder. The new genes may represent new starting points for developing treatments.
Scientists have harnessed the power of RNAi to study the function of many individual genes by reducing their activity levels, or silencing them. This process enables researchers to identify genes and molecules that are linked to particular diseases. To do this, researchers use siRNAs, which are RNA molecules that have a complementary chemical makeup, or sequence, to that of a targeted gene. While the gene is silenced, researchers look for changes in cell functions to gain insights about what it normally does. By silencing genes in the cell one at a time, scientists can explore and understand their complex relation to other genes in the context of disease.
Until now, a major limitation in the scientific community’s use of RNAi data has been the lack of a publicly available dataset, along with siRNA sequences directed against every human gene. Historically, providers have not allowed publishing of proprietary siRNA sequence information. To address this problem, NCATS and Life Technologies are providing all researchers with access to siRNA data from Life Technologies’ Silencer Select siRNA library, which includes 65,000 siRNA sequences targeting more than 20,000 human genes. Simultaneously, NCATS is releasing complementary data on the effects of each siRNA molecule on biological functions. All of this information is available to the public free-of-charge through NIH’s public database PubChem.
‘Producing and releasing these data demonstrate NCATS’ commitment to speeding the translational process for all diseases,’ said NCATS Director Christopher P. Austin, M.D. ‘The Human Genome Project showed that public data release is critical to scientific progress. Similarly, I believe that making RNAi data publicly available will revolutionise the study of biology and medicine.’
Experts from the NIH RNAi initiative, administered by NCATS’ Division of Pre-Clinical Innovation, conduct screens for NIH investigators. They will add new RNAi data into PubChem on an ongoing basis, making the database a growing resource for gene function studies.
‘By releasing all our siRNA sequences, we are enabling novel strategies to advance fundamental understanding of biology and discovery of new potential drug targets,’ said Mark Stevenson, president and chief operating officer of Life Technologies.
NIH invites other companies that sell siRNA libraries and researchers who conduct genome-wide RNAi screens with the Life Technologies library to deposit sequence data and biological activity information into PubChem. For assistance with submitting data to PubChem, researchers may contact info@ncbi.nlm.nih.gov.
‘Translation of siRNA library screening results into impactful downstream experiments is the ultimate goal of scientists using our library,’ said Alan Sachs, M.D., Ph.D., head of global research and development for Life Technologies. ‘The availability of these sequence data should greatly facilitate this effort because scientists no longer will be blinded to the actual sequence they are targeting.’ National Institutes of Health

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:19Gene-silencing data now publicly available to help scientists better understand disease

GEORGIA. Your link to a strong value chain.

, 26 August 2020/in E-News /by 3wmedia

Hematology and Immunology account for 21 percent of Georgia’s life science workforce. These industries are growing in Georgia because the state offers attractive business incentives, access to an extremely talented workforce in medicine and technology, and world-class global infrastructure for cold chain, logistics and transportation.

American Red Cross Biomedical Services, Baxter, Dendreon, Immucor, QualTex Laboratories and UCB Inc. have already discovered the advantages of doing business in Georgia. Learn more about what you’ll be able to accomplish by partnering with the Georgia Department of Economic Development.

Visit the website or call at 877-815-5883 to find out why Georgia is perfect for you.

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:07GEORGIA. Your link to a strong value chain.

Toxin from brain cells triggers neuron loss in human ALS model

, 26 August 2020/in E-News /by 3wmedia

In most cases of amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, a toxin released by cells that normally nurture neurons in the brain and spinal cord can trigger loss of the nerve cells affected in the disease, Columbia researchers report.
The toxin is produced by star-shaped cells called astrocytes and kills nearby motor neurons. In ALS, the death of motor neurons causes a loss of control over muscles required for movement, breathing, and swallowing. Paralysis and death usually occur within 3 years of the appearance of first symptoms.

The report follows the researchers’ previous study, which found similar results in mice with a rare, genetic form of the disease, as well as in a separate study from another group that used astrocytes derived from patient neural progenitor cells. The current study shows that the toxins are also present in astrocytes taken directly from ALS patients.

‘I think this is probably the best evidence we can get that what we see in mouse models of the disease is also happening in human patients,’ said the study’s senior author, Serge Przedborski, MD, PhD, the Page and William Black Professor of Neurology (in Pathology and Cell Biology), Vice Chair for Research in the department of Neurology, and co-director of Columbia’s Motor Neuron Center.

The findings also are significant because they apply to the most common form of ALS, which affects about 90 percent of patients. Scientists do not know why ALS develops in these patients; the other 10 percent of patients carry one of 27 genes known to cause the disease.

‘Now that we know that the toxin is common to most patients, it gives us an impetus to track down this factor and learn how it kills the motor neurons,’ Dr. Przedborski said. ‘Its identification has the potential to reveal new ways to slow down or stop the destruction of the motor neurons.’

In the study, Dr. Przedborski and study co-authors Diane Re, PhD, and Virginia Le Verche, PhD, associate research scientists, removed astrocytes from the brain and spinal cords of six ALS patients shortly after death and placed the cells in petri dishes next to healthy motor neurons. Because motor neurons cannot be removed from human subjects, they had been generated from human embryonic stem cells in the Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, also at CUMC.

Within two weeks, many of the motor neurons had shrunk and their cell membranes had disintegrated; about half of the motor neurons in the dish had died. Astrocytes removed from people who died from causes other than ALS had no effect on the motor neurons. Nor did other types of cells taken from ALS patients.
The researchers confirmed that the cause of the motor neurons’ death was a toxin released into the environment by immersing healthy motor neurons in the astrocytes’ culture media. The presence of the media, even without astrocytes, killed the motor neurons.

The researchers have not yet identified the toxin released by the astrocytes. But they did discover the nature of the neuronal death process triggered by the toxin. The toxin triggers a biochemical cascade in the motor neurons that essentially causes them to undergo a controlled cellular explosion.

Drs. Przedborski, Re, and Le Verche found that they could prevent astrocyte-triggered motor neuron death by inhibiting one of the key components of this molecular cascade.

These findings may lead to a way to prevent motor neuron death in patients and potentially prolong life. But the therapeutic potential of such inhibition is far from clear. ‘For example, we don’t know if this would leave patients with living but dysfunctional neurons,’ Dr. Przedborski said. The researchers are now testing the idea of inhibition in animal models of ALS.
The development of new therapies for ALS has been disappointing, with more than 30 clinical trials ending with no new treatments since the 1995 FDA approval of riluzole.

The lack of progress may be partly because animal models used to study ALS do not completely recreate the human disease. The new all-human cell model of ALS created for the current study may improve scientists’ ability to identify useful drug targets, particularly for the most common form of the disease.

‘Although there are many neuro-degenerative disorders, only for a handful do we have access to a simplified model that is relevant to the disease and can therefore potentially be used for high-throughput drug screening. So this model is quite special,’ Dr. Przedborski said. ‘Here we have a spontaneous disease phenotype triggered by the relevant tissue that causes human illness. That’s one important thing. The other important thing is that this model is derived entirely from human elements. This is probably the closest, most natural model of human ALS that we can get in a dish.’ Columbia University Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:14Toxin from brain cells triggers neuron loss in human ALS model

Different gene expression in male and female brains helps explain differences in brain disorders

, 26 August 2020/in E-News /by 3wmedia

UCL scientists have shown that there are widespread differences in how genes, the basic building blocks of the human body, are expressed in men and women’s brains.
Based on post-mortem adult human brain and spinal cord samples from over 100 individuals, scientists at the UCL Institute of Neurology were able to study the expression of every gene in 12 brain regions.
They found that the way that the genes are expressed in the brains of men and women were different in all major brain regions and these differences involved 2.5% of all the genes expressed in the brain.
Among the many results, the researchers specifically looked at the gene NRXN3, which has been implicated in autism. The gene is transcribed into two major forms and the study results show that although one form is expressed similarly in both men and women, the other is produced at lower levels in women in the area of the brain called the thalamus. This observation could be important in understanding the higher incidence of autism in males.
Our study provides the most complete information so far on how the sexes differ in terms of how their genes are expressed in the brain.
Overall, the study suggests that there is a sex-bias in the way that genes are expressed and regulated, leading to different functionality and differences in susceptibility to brain diseases observed by neurologists and psychiatrists.

Dr. Mina Ryten, UCL Institute of Neurology and senior author of the paper, said: ‘There is strong evidence to show that men and women differ in terms of their susceptibility to neurological diseases, but up until now the basis of that difference has been unclear.

‘Our study provides the most complete information so far on how the sexes differ in terms of how their genes are expressed in the brain. We have released our data so that others can assess how any gene they are interested in is expressed differently between men and women.’ UCL

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:21Different gene expression in male and female brains helps explain differences in brain disorders

MRI reveals genetic activity

, 26 August 2020/in E-News /by 3wmedia

Doctors commonly use magnetic resonance imaging (MRI) to diagnose tumours, damage from stroke, and many other medical conditions. Neuroscientists also rely on it as a research tool for identifying parts of the brain that carry out different cognitive functions.

Now, a team of biological engineers at MIT is trying to adapt MRI to a much smaller scale, allowing researchers to visualise gene activity inside the brains of living animals. Tracking these genes with MRI would enable scientists to learn more about how the genes control processes such as forming memories and learning new skills, says Alan Jasanoff, an MIT associate professor of biological engineering and leader of the research team.

‘The dream of molecular imaging is to provide information about the biology of intact organisms, at the molecule level,’ says Jasanoff, who is also an associate member of MIT’s McGovern Institute for Brain Research. ‘The goal is to not have to chop up the brain, but instead to actually see things that are happening inside.’

To help reach that goal, Jasanoff and colleagues have developed a new way to image a ‘reporter gene’ — an artificial gene that turns on or off to signal events in the body, much like an indicator light on a car’s dashboard. In the new study, the reporter gene encodes an enzyme that interacts with a magnetic contrast agent injected into the brain, making the agent visible with MRI. This approach allows researchers to determine when and where that reporter gene is turned on.
MRI uses magnetic fields and radio waves that interact with protons in the body to produce detailed images of the body’s interior. In brain studies, neuroscientists commonly use functional MRI to measure blood flow, which reveals which parts of the brain are active during a particular task. When scanning other organs, doctors sometimes use magnetic ‘contrast agents’ to boost the visibility of certain tissues.

The new MIT approach includes a contrast agent called a manganese porphyrin and the new reporter gene, which codes for a genetically engineered enzyme that alters the electric charge on the contrast agent. Jasanoff and colleagues designed the contrast agent so that it is soluble in water and readily eliminated from the body, making it difficult to detect by MRI. However, when the engineered enzyme, known as SEAP, slices phosphate molecules from the manganese porphyrin, the contrast agent becomes insoluble and starts to accumulate in brain tissues, allowing it to be seen.

The natural version of SEAP is found in the placenta, but not in other tissues. By injecting a virus carrying the SEAP gene into the brain cells of mice, the researchers were able to incorporate the gene into the cells’ own genome. Brain cells then started producing the SEAP protein, which is secreted from the cells and can be anchored to their outer surfaces. That’s important, Jasanoff says, because it means that the contrast agent doesn’t have to penetrate the cells to interact with the enzyme.

Researchers can then find out where SEAP is active by injecting the MRI contrast agent, which spreads throughout the brain but accumulates only near cells producing the SEAP protein.
In this study, which was designed to test this general approach, the detection system revealed only whether the SEAP gene had been successfully incorporated into brain cells. However, in future studies, the researchers intend to engineer the SEAP gene so it is only active when a particular gene of interest is turned on.

Jasanoff first plans to link the SEAP gene with so-called ‘early immediate genes,’ which are necessary for brain plasticity — the weakening and strengthening of connections between neurons, which is essential to learning and memory.

‘As people who are interested in brain function, the top questions we want to address are about how brain function changes patterns of gene expression in the brain,’ Jasanoff says. ‘We also imagine a future where we might turn the reporter enzyme on and off when it binds to neurotransmitters, so we can detect changes in neurotransmitter levels as well.’ MIT

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:09MRI reveals genetic activity

Two parents with Alzheimer’s Disease? Disease may show up decades early on brain scans

, 26 August 2020/in E-News /by 3wmedia

People who are dementia-free but have two parents with Alzheimer’s disease may show signs of the disease on brain scans decades before symptoms appear, according to a new study. ‘Studies show that by the time people come in for a diagnosis, there may be a large amount of irreversible brain damage already present,’ said study author Lisa Mosconi, PhD, with the New York University School of Medicine in New York. ‘This is why it is ideal that we find signs of the disease in high-risk people before symptoms occur.’ For the study, 52 people between the ages of 32 and 72 and free of dementia underwent several kinds of brain scans, including Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) scans. PET scans measure the amount of brain plaques as well as overall brain activity, such as brain metabolism. MRI scans look at brain structure and possible reductions in brain volume. Participants were split into four groups of 13 people: those with a mother with Alzheimer’s disease, a father, both parents, or no family history of the disease. People with both parents who had Alzheimer’s disease showed more severe abnormalities in brain volume, metabolism and five to 10 percent increased brain plaques in certain brain regions compared to the other three groups. ‘Our study also suggests that there might be genes that predispose individuals to develop brain Alzheimer’s pathology as a function of whether one parent or both parents have the disease,’ Mosconi said. ‘We do not yet know which genes, if any, are responsible for these early changes, and we hope that our study will be helpful to future genetic investigations.’ People whose mother had Alzheimer’s disease showed a greater level of the Alzheimer’s disease biomarkers in the brain than people whose father had the disease, which is consistent with previous studies showing that people whose mothers had the disease were more likely to develop it than those with fathers with the disease, Mosconi said. She noted the small sample size of the study. The research was supported by the National Institutes of Health and the Alzheimer’s Association. American Academy of Neurology

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:16Two parents with Alzheimer’s Disease? Disease may show up decades early on brain scans

New trigger for breast cancer metastasis

, 26 August 2020/in E-News /by 3wmedia

For years, scientists have observed that tumour cells from certain breast cancer patients with aggressive forms of the disease contained low levels of mitochondrial DNA. But, until recently, no one was able to explain how this characteristic influenced disease progression.

Now, University of Pennsylvania researchers have revealed how a reduction in mitochondrial DNA content leads human breast cancer cells to take on aggressive, metastatic properties. The work breaks new ground in understanding why some cancers progress and spread faster than others and may offer clinicians a biomarker that would distinguish patients with particularly aggressive forms of disease, helping personalise treatment approaches.

The study was led by the Penn School of Veterinary Medicine’s Manti Guha, a senior research investigator, and Narayan Avadhani, Harriet Ellison Woodward Professor of Biochemistry in the Department of Animal Biology. Additional Penn Vet collaborators included Satish Srinivasan, Gordon Ruthel, Anna K. Kashina and Thomas Van Winkle. They teamed with Russ P. Carstens of Penn’s Perelman School of Medicine and Arnulfo Mendoza and Chand Khanna of the National Cancer Institute.

Mitochondria, the ‘powerhouses’ of mammalian cells, are also a signalling hub. They are heavily involved in cellular metabolism as well as in apoptosis, the process of programmed cell death by which potentially cancerous cells can be killed before they multiply and spread. In addition, mitochondria contain their own genomes, which code for specific proteins and are expressed in co-ordination with nuclear DNA to regulate the provision of energy to cells.

In mammals, each cell contains between 100 and 1,000 copies of mitochondrial DNA, but previous research had found that as many as 80 percent of people with breast cancer have low mitochondrial DNA, or mtDNA, content.

To gain an understanding of the mechanism that connects low mtDNA levels with a cellular change that leads to cancer and metastasis, Guha, Avadhani and their colleagues set up two systems by which they could purposefully reduce the amount of mtDNA in a cell. One used a chemical to deplete the DNA content, and another altered mtDNA levels genetically. They compared normal, non-cancer-forming human breast tissue cells with cancerous breast cells using both of these treatments, contrasting them with cells with unmanipulated mtDNA.

The differences between cells with unmodified and reduced mtDNA levels were striking, the researchers found. The cells in which mtDNA was reduced had altered metabolism and their structure appeared disorganised, more like that of a metastatic cancer cell. Even the non-tumour-forming breast cells became invasive and more closely resembled cancer cells. Significantly, cells with reduced mtDNA became self-renewing and expressed specific cell surface markers characteristic of breast cancer stem cells.

‘Reducing mitochondrial DNA makes mammary cells look like cancerous stem cells,’ Avadhani said. ‘These cells acquire the characteristics of stem cells, that is the ability to propagate and migrate, in order to begin the process of metastasis and move to distal sites in the body.’

‘Most patients who had low copy numbers of mitochondrial DNA have a poor disease prognosis,’ Guha said. ‘We’ve shown a causal role for this mitochondrial defect and identified a candidate biomarker for aggressive forms of the disease. In the future, mtDNA and the factors involved in mitochondrial signalling may serve as markers of metastatic potential and novel points for therapeutic intervention of cancer stem cells. Since the specific inducers of cancer stem cells, which are key drivers of metastasis, remain elusive, our current findings are a significant advancement in this area.’

No two breast cancers are exactly alike, so having a way to recognise patients who are at high-risk for developing particularly invasive and rapidly metastasising cancers could help physicians customise treatments. In addition, researchers are currently filling in the unknown components of the signalling pathway linking a cell’s mitochondrial DNA levels and its involvement in metastatic disease. University of Pennsylvania

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:26New trigger for breast cancer metastasis

Confirmation of the neurobiological origin of attention – deficit disorder

, 26 August 2020/in E-News /by 3wmedia

A study, carried out on mice, has just confirmed the neurobiological origin of attention-deficit disorder (ADD), a syndrome whose causes are poorly understood. Researchers from CNRS, the University of Strasbourg and INSERM have identified a cerebral structure, the superior colliculus, where hyperstimulation causes behaviour modifications similar to those of some patients who suffer from ADD. Their work also shows noradrenaline accumulation in the affected area, shedding light on this chemical mediator having a role in attention disorders.

Attention-deficit disorder affects between 4-8% of children. It manifests mainly through disturbed attention and verbal and motor impulsiveness, sometimes accompanied by hyperactivity. About 60% of these children still show symptoms in adulthood. No cure exists at this time. The only effective treatment is to administer psychostimulants, but these have substantial side effects, such as dependence. Persistent controversy surrounding the neurobiological origin of this disorder has hindered the development of new treatments.
The study in Strasbourg investigated the behaviour of transgenic mice having developmental defects in the superior colliculus. This structure, located in the midbrain, is a sensory hub involved in controlling attention and visual and spatial orientation. The mice studied were characterised by duplicated neuron projections between the superior colliculus and the retina. This anomaly causes visual hyperstimulation and excess noradrenaline in the superior colliculus. The effects of the neurotransmitter noradrenaline, which vary from species to species, are still poorly understood. However, we do know that this noradrenaline imbalance is associated with significant behavioural changes in mice carrying the genetic mutation. By studying them, researchers have observed a loss of inhibition: for example mice hesitate less to penetrate a hostile environment. They have difficulties in understanding relevant information and demonstrate a form of impulsiveness. These symptoms remind us of adult patients suffering from one of the forms of ADD.
Currently, the fundamental work on ADD uses mainly animal models obtained by mutations that disturb dopamine production and transmission pathways. In mice with a malformed superior colliculus, these pathways are intact. The changes occur elsewhere in the neural networks of the midbrain. By broadening the classic boundary used to research its causes, using these new models would allow a more global approach to ADD to be developed. Characterizing the effects of noradrenaline on the superior colliculus more precisely could open the way to innovative therapeutic strategies. INSERM

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:05Confirmation of the neurobiological origin of attention – deficit disorder
Page 123 of 227«‹121122123124125›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
11 December 2025

New AlphaSync database ensures protein structure predictions stay current

11 December 2025

NADMED launches $30,000 metabolomics competition

13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription