Beukenlaan 137
5616 VD Eindhoven
The Netherlands
+31 85064 55 82
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
The continued use of first-generation antiepileptic drugs (AEDs) and their usually pronounced intra- and inter-individual variability, have made AEDs among the most common medications for which therapeutic drug monitoring (TDM) is performed. As the most cost-effective, rational and clinically useful methodologies are being pursued for TDM interventions, suitable sampling alternatives (e.g. dried blood samples and saliva) for the conventional venous sampling have been proposed.
by Sofie Velghe and Prof. Christophe P. Stove
Background
Administration of appropriate antiepileptic drugs (AEDs) is the mainstay in the attempt to provide epilepsy patients with a seizure-free, normal life. AEDs constitute a structurally and pharmacologically diverse group of drugs for which different criteria for classification are used, e.g. classification based on time of introduction by the pharmaceutical industry (i.e. first-, second- and third-generation of AEDs) [1]. In this way, carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB) and valproic acid (VPA) belong to the first-generation of AEDs, because of their introduction prior to 1990 [1]. Examples of the second-generation of AEDs are, among others, oxcarbazepine, vigabatrin and topiramate, whereas lacosamide, retigabine and eslicarbazepine are categorized as third-generation AEDs [1]. Another, clinically relevant classification is based on their spectrum of activity. Here, a distinction can be made between AEDs with a broad (i.e. effective against multiple types of seizures) and a narrow (i.e. effective against specific types of seizures for example focal epilepsy) spectrum [2]. Table 1 provides an overview of the licensed AEDs in Belgium, together with their plasma reference ranges, classified based on their activity spectrum. The treatment strategy of epilepsy is typically twofold: initially a treatment of acute tonic-clonic seizures, generally with benzodiazepines, is necessary, followed by an initiation of a chronic, preventive treatment with AEDs. Preferably, the latter consists of a monotherapy with one AED for which the dose is slowly titrated upwards when necessary. However, for some forms of epilepsy or in cases where a monotherapy at the maximum dosage is insufficient, a combination therapy with multiple AEDs is needed.
The generally narrow therapeutic indices, causing toxicity to be a common issue, together with their frequent use (i.e. for epilepsy, but also for pain and bipolar disorder) has made first-generation AEDs one of the most common medication groups for which therapeutic drug monitoring (TDM) is performed [3].
Owing to the large inter-individual variety in types of epilepsy and in the severity of epileptic seizures, the same dosage of an AED causes a symptom decrease in some patients, whereas in others epileptic seizures remain poorly controlled. Furthermore, some patients experience complete seizure control with an AED blood concentration below or above a set reference range, making TDM of AEDs quite challenging. Therefore, dosage adjustment should preferably be performed by combining the results of TDM with the clinical outcome. In other words, at the start of an AED treatment, a clinician must aim at obtaining an AED blood concentration within a set reference range, followed by a titration upwards or downwards, depending on the clinical symptoms. In this context, the concept of the ‘individual therapeutic concentration/range’ arose, being the AED concentration or range of concentrations for which an individual patient experiences an optimum response [4]. In order to define this ‘individual therapeutic concentration/range’, achieving the optimum desired clinical outcome can also be seen as an indication for TDM of AEDs. Determining the latter concentration or range can be performed for every AED, also including the AEDs for which a reference range is currently still lacking. To do so, the steady-state AED(s) concentration(s) should preferably be measured twice (2–4 months apart) once a patient has reached his/her optimum AED regimen [3].
Alternative sampling strategies for TDM of AEDs
Limitations coupled to the traditional way of performing TDM of AEDs (i.e. in plasma or serum samples) are the invasiveness of the sampling technique and the typically large amounts of blood that are sampled. In addition, sampling requires a phlebotomist, which obliges a visit to a hospital or doctor. Therefore, a growing interest in the use of non-invasive or minimally invasive alternative sampling strategies for TDM of AEDs has arisen. In this regard, dried blood spots (DBSs) are undoubtedly, besides oral fluid, the most widely used alternative matrix. On the one hand, benefits coupled to the use of DBSs are: (i) possibility of home sampling, since the samples are generally obtained by the use of a finger prick; (ii) non-contagious character, making it possible to send the samples via regular mail to a laboratory; (iii) only a small sample volume is necessary, which makes it very attractive for certain patients, such as those with anemia and young children; (iv) suitability for automation of sample processing and analysis; and (v) increased stability for many analytes, which can be of utmost importance for AEDs, given the controversy concerning the stability of some first-generation AEDs in serum collected via gel separator tubes [3, 5, 6]. On the other hand, DBS use also suffers from some challenges: (i) the small sample volume requires sensitive analytical instrumentation; (ii) risk of contamination; (iii) the hematocrit (Hct) effect; (iv) possibility of analyte concentration differences between capillary and venous blood; (v) adequate sampling is necessary, imposing the need for proper training of patients on the sampling technique; and (vi) influence of spotted blood volume and the punch location, especially when partial DBS punches are analysed [5, 6]. Among these challenges, the Hct effect is undoubtedly the most discussed issue related to DBS analysis. Variations in Hct influence the spreading of blood on the filter paper: blood with a higher Hct will spread less compared to blood with a lower Hct, impacting the spot size and spot homogeneity. Furthermore, the Hct may also influence matrix effect and recovery. With this impact in mind, many strategies to cope with this issue have been made over the past few years (reviewed in De Kesel et al. [7] and Velghe et al. [8]). Among these are volumetrically generated dried blood samples, which are analysed entirely. These could be DBSs on conventional filter paper [9], or, alternatively, samples generated via volumetric absorptive microsampling (VAMS) (Fig. 1), a technique by which a fixed volume of blood is wicked up via an absorbent tip [10]. We recently demonstrated the potential of VAMS for AED monitoring [11]. However, It needs to be stated that, if no large differences are anticipated in the Hct of the target population, it can be assumed that the impact of the Hct will remain limited and partial-punch analysis will likely not pose an issue for DBS-based AED analysis [12–14].
As TDM is most often performed on plasma or serum samples, reference ranges for AEDs are typically set for these matrices. Hence, if one wants to derive a plasma concentration from a (dried) blood concentration, there is a need for a ‘conversion’. This can be done by establishing average blood : plasma ratios or, alternatively, by plotting (dried) blood concentrations versus plasma concentrations of a reference set of samples and using the resulting calibration equation to derive ‘calculated plasma concentrations’ from a test set of samples. Obviously, this will also be accompanied with an additional level of uncertainty [11–14].
Alternatively, dried serum/plasma spots might be generated directly, using devices that contain filters that essentially allow passage of the liquid portion of blood but will stop the cellular portion [15–17]. Although several devices have been developed, it remains to be fully established (for AEDs, as well as for other analytes) whether the concentrations that can be derived from the resulting dried plasma/serum spots effectively mirror those in liquid plasma/serum.
Lastly, it should also be remarked that dried blood samples may also be used – without a need for conversion – for the follow-up of someone’s ‘individual therapeutic concentration/range’, once this has been established. On the one hand, this overcomes the need of using specialized dedicated devices, which typically come at an increased cost; on the other hand, this avoids the introduction of an additional level of conversion-associated uncertainty.
Conclusion
TDM of AEDs via DBS, VAMS or dried plasma/serum spots is an interesting application with the potential for a better follow-up of patients. Large-scale studies are warranted to substantiate the benefit for the patient and the corresponding potential associated cost savings.
References
1. Milosheska D, Grabnar I, Vovk T. Dried blood spots for monitoring and individualization of antiepileptic drug treatment. Eur J Pharm Sci 2015; 75: 25–39.
2. Commented drug code. BCFI 2018 (www.bcfi.be) [In Dutch/French].
3. Patsalos PN, Spencer EP, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs in epilepsy: a 2018 update. TDM 2018; 40: 526–548.
4. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E. Antiepileptic drugs – best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 2008; 49: 1239–1276.
5. Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet 2014; 53: 961–973.
6. Velghe S, Capiau S, Stove CP. Opening the toolbox of alternative sampling strategies in clinical routine: A key-role for (LC-)MS/MS. Trac-Trend Anal Chem 2016; 84: 61–73.
7. De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis 2013; 5: 2023–2041.
8. Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal 2018; 163: 188–196.
9. Velghe S, Stove CP. Evaluation of the Capitainer-B Microfluidic device as a new hematocrit-independent alternative for dried blood spot collection. Anal Chem 2018; 90: 12893–12899.
10. Denniff P, Spooner N. Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Anal Chem 2014; 86: 8489–8495.
11. Velghe S, Stove CP. Volumetric absorptive microsampling as an alternative tool for therapeutic drug monitoring of first-generation anti-epileptic drugs. Anal Bioanal Chem 2018; 410: 2331–2341.
12. Linder C, Andersson M, Wide K, Beck O, Pohanka A. A LC-MS/MS method for therapeutic drug monitoring of carbamazepine, lamotrigine and valproic acid in DBS. Bioanalysis 2015; 7: 2031–2039.
13. Linder C, Wide K, Walander M, Beck O, Gustafsson LL, Pohanka A. Comparison between dried blood spot and plasma sampling for therapeutic drug monitoring of antiepileptic drugs in children with epilepsy: A step towards home sampling. Clin Biochem 2017; 50: 418–424.
14. Linder C, Hansson A, Sadek S, Gustafsson LL, Pohanka A. Carbamazepine, lamotrigine, levetiracetam and valproic acid in dried blood spots with liquid chromatography tandem mass spectrometry; method development and validation. J Chrom B 2018; 1072: 116–122.
15. Ryona I, Henion J. A Book-type dried plasma spot card for automated flow-through elution coupled with online SPE-LC-MS/MS bioanalysis of opioids and stimulants in blood. Anal Chem 2016; 88: 11229–11237.
16. Kim JH, Woenker T, Adamec J, Regnier F. Simple, miniaturized blood plasma extraction method. Anal Chem 2013; 85: 11501–11508.
17. Hauser J, Lenk G, Hansson J, Beck O, Stemme G, Roxhed N. High-yield passive plasma filtration from human finger prick blood. Anal Chem 2018; 90: 13393–13399.
The authors
Sofie Velghe PharmD and Christophe P. Stove* PharmD, PhD
Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
*Corresponding author
E-mail: christophe.stove@ugent.be
Fosfomycin is a broad-spectrum antibiotic used as empirical treatment for uncomplicated urinary tract infections (UTIs), of which Escherichia coli is the most common cause. To rapidly detect fosfomycin-resistant E. coli isolates and consequently improve patients’ treatment and management, we have developed the Rapid Fosfomycin/E. coli NP test, a rapid, easy-to-perform, specific and sensitive diagnostic test.
by Dr Linda Mueller, Dr Laurent Poirel and Prof. Patrice Nordmann
Introduction
Fosfomycin, a phosphonic acid-derived bactericidal antibiotic discovered in 1969, is now of renewed interest, especially for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. This antibiotic is water-soluble and has a low molecular weight, allowing high diffusion at the tissue level [1]. Its features such as broad-spectrum activity, safety and efficacy make fosfomycin as one of the first-line antibiotics used for uncomplicated urinary tract infections (UTIs) treatment [2]. More than 75% of UTIs are due to Escherichia coli [3].
Fosfomycin enters the bacterial cell by the transport proteins GlpT (glycerol-3-phosphate transporter) and UhpT (hexose-6-phosphat:phosphate antiporter); once in the cytosol it binds and inactivates MurA (UDP-N-acetylglucosamine enolpyruvyl transferase), the enzyme involved in the first step of peptidoglycan biosynthesis. Hence, it inhibits bacterial cell wall synthesis [4].
Because of its unique structure and mechanism of action, cross-resistance with fosfomycin and other bacterial agents has not been observed. Fosfomycin as a single agent works well for treating most of UTIs. Additionally, synergistic effects of fosfomycin with several unrelated molecules, such as gentamicin, carbapenems, aztreonam and aminoglycosides, have been observed when treating clinically-relevant MDR Gram-negative bacteria [5].
One of the main concerns with antibiotic resistance in E. coli corresponds to the acquisition of extended-spectrum β-lactamases (ESBL) leading to resistance to expanded-spectrum cephalosporins. ESBL-producing E. coli are mostly community-acquired and may represent 10 to 20% of E. coli isolates in several countries including in the US [6]. Those strains are often co-resistant to several aminoglycosides, to trimethoprim, cotrimoxazole and fluoroquinolones, leaving few therapeutic options available including fosfomycin [7].
Both wild-type susceptible E. coli and ESBL-producing E. coli show an overall high susceptibility rate to fosfomycin (>90%) [8]. However, a Spanish study monitoring fosfomycin resistance during 5 years, showed an increased use of fosfomycin [from 0.122 defined daily dose per 1000 inhabitants per day (DID) in 2004 to 0.191 DID in 2008] and an increased fosfomycin resistance rate in E.coli (from 1.6% to 3.8%) as well as in ESBL-producing E. coli (from 2.2% to 21.7%) [9].
The mechanisms of resistance to fosfomycin described in E. coli are either non-transferable or transferable. The non-transferable and chromosome-encoded resistance involve reduced permeability, resulting from mutations in glpT and uhpT genes, encoding for fosfomycin transporters, and amino acid mutations in the active site of the MurA target. Plasmid-mediated fosfomycin resistance mechanisms in E. coli correspond to production of fosfomycin-inactivating metallo-enzymes (encoded by the fosA genes) [10]. Among the plasmid-borne fosA variants described so far, fosA3 remains the most widespread resistance determinant among both human and animal isolates, those latter being either recovered from pets or livestock [11, 12]. Moreover, a study performed in Taiwan reported the transmission of FosA3-producing E. coli between companion animals and respective owners [13]. Importantly, the fosA3 gene is often identified onto conjugative plasmids along with CTX-M-type ESBL encoding genes, thus leading to acquired resistance to both fosfomycin and broad-spectrum cephalosporins [14, 15]. As fosfomycin is being used as an empiric treatment against UTIs, it was of great interest to develop a rapid test to evaluate the efficacy of this antibiotic.
Rapid Fosfomycin/E. coli NP test
Currently the reference technique recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) to evaluate fosfomycin susceptibility is agar dilution, a fastidious technique requiring 18±2 h to get the results [16]. According to EUCAST, an isolate of E. coli is categorized as susceptible or as resistant when minimum inhibitory concentrations (MICs) are ≤32 and >32 mg/L, respectively.
Alternatively, disk diffusion and gradient strips, although exhibiting some discrepancies with the reference agar dilution method, might be used [17]. To accelerate the process of fosfomycin resistance detection, we have developed the Rapid Fosfomycin/E. coli NP test that allows detection of resistance within 1 h 30 min of fosfomycin-resistant E. coli isolated from culture plates.
This user-friendly technique is based on carbohydrate hydrolysis, detecting bacterial growth of fosfomycin-resistant isolates in the presence of a defined concentration (40 mg/L) of fosfomycin. Of note, fosfomycin-resistant isolates are detected independently of the molecular mechanism of resistance.
Briefly, the technique includes the preparation of a bacterial suspension (109 CFU/mL; 3–3.5 McFarland) that is poured on a 96-well polystyrene microplate. This culture is made in the Rapid Fosfomycin NP solution supplemented with 25 mg/L glucose-6-phosphate with or without 40 mg/L fosfomycin. The plate is incubated for 1 h 30 min at 35±2 °C and colour changes are detected by visual inspected. Fosfomycin-resistant isolates grow in the presence and absence of fosfomycin, triggering a colour switch from orange to yellow in both wells, a test result which is, therefore, considered as positive (Fig. 1). When dealing with fosfomycin-susceptible isolates, the well supplemented with fosfomycin does not exhibit any bacterial growth and remains orange; the test is, therefore, considered as negative. This test was evaluated with 100 strains including 22 fosfomycin-resistant isolates. It showed a sensitivity and a specificity of 100% and 98.7% respectively.
Conclusion
The Rapid Fosfomycin/E. coli NP test is rapid (1 h 30 min), specific (98.7%) and sensitive (100%). It is easy to perform, cost-effective, and may be used worldwide, regardless of the technical capabilities of the lab. Ongoing work aims to evaluate its performances directly from urine samples, which would represent significant added-value in terms of diagnostic rapidity.
The speed of this test allows a saving of at least 16 h when compared to the traditional agar dilution method. It is a potentially useful clinical test for first-step screening of fosfomycin resistance in E. coli.
Even though a low level of resistance to fosfomycin is currently observed among E. coli, the fact that we usually observe an increased fosfomycin clinical use, meaning an increased selective pressure, argues for a likely increased occurrence of fosfomycin-resistant isolates in the future. Since the principle of this test is based on a rapid culture, it may be used to detect any fosfomycin resistance trait that may be either chromosomally or plasmid-encoded. Fosfomycin is an old antibiotic that is very useful for the treatment of uncomplicated UTIs. On the one hand, even after extensive use for such an indication, the prevalence of resistance remains low, likely due to the fitness cost of the chromosomal mutations needed for acquired resistance, and also as a consequence of a high urinary drug concentration. On the other hand, the worldwide spread of fosfomycin-modifying enzymes should be monitored, as the biological cost of this emerging mechanism of resistance is much lower than that induced by chromosomal mutations [18] and the co-occurrence of fosA-like genes on plasmids with other resistance genes is commonly observed, meaning that co-selection can occur quite frequently.
References
1. Dijkmans AC, Zacarias NVO, Burggraaf J, Mouton JW, Wilms EB, van Nieuwkoop C, et al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics (Basel) 2017; 6(4): pii: E24.
2. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 2011; 52(5): e103–120.
3. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13(5): 269–284.
4. Castaneda-Garcia A, Blazquez J, Rodriguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics (Basel) 2013; 2(2): 217–236.
5. Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev 2016; 29(2): 321–347.
6. Castanheira M, Farrell SE, Krause KM, Jones RN, Sader HS. Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrob Agents Chemother 2014; 58(2): 833–838.
7. Wiedemann B, Heisig A, Heisig P. Uncomplicated urinary tract infections and antibiotic resistance-epidemiological and mechanistic aspects. Antibiotics (Basel) 2014; 3(3): 341–352.
8. Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 2010; 10: 4–-50.
9. Oteo J, Orden B, Bautista V, Cuevas O, Arroyo M, Martinez-Ruiz R, et al. CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother 2009; 64(4): 712–717.
10. Silver LL. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 2017; 7(2): pii: a025262.
11. Alrowais H, McElheny CL, Spychala CN, Sastry S, Guo Q, Butt AA, et al. Fosfomycin resistance in Escherichia coli, Pennsylvania, USA. Emerg Infect Dis 2015; 21(11): 2045–2047.
12. Xie M, Lin D, Chen K, Chan EW, Yao W, Chen S. Molecular characterization of Escherichia coli strains isolated from retail meat that harbor blaCTX-M and fosA3 genes. Antimicrob Agents Chemother 2016; 60(4): 2450–2455.
13. Yao H, Wu D, Lei L, Shen Z, Wang Y, Liao K. The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. Vet Microbiol 2016; 193: 67–71.
14. Benzerara Y, Gallah S, Hommeril B, Genel N, Decre D, Rottman M, et al. Emergence of plasmid-mediated fosfomycin-resistance genes among Escherichia coli isolates, France. Emerg Infect Dis 2017; 23(9): 1564–1567.
15. Yang X, Liu W, Liu Y, Wang J, Lv L, Chen X, et al. F33: A-: B-, IncHI2/ST3, and IncI1/ST71 plasmids drive the dissemination of fosA3 and bla CTX-M-55/-14/-65 in Escherichia coli from chickens in China. Front Microbiol 2014; 5: 688.
16. Performance standards for antimicrobial susceptibility testing, 28th edn. Clinical and Laboratory Standards Institute (CLSI) document M100-S28 2018.
17. Hirsch EB, Raux BR, Zucchi PC, Kim Y, McCoy C, Kirby JE, et al. Activity of fosfomycin and comparison of several susceptibility testing methods against contemporary urine isolates. Int J Antimicrob Agents 2015; 46(6): 642–647.
18. Cattoir V, Guérin F. How is fosfomycin resistance developed in Escherichia coli? Future Microbiol 2018; 13(16): 1693–1696.
The authors
Linda Mueller*1,2 PhD; Laurent Poirel1,2,3 PhD; Patrice Nordmann1,2,3,4 MD, PhD
1Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
2Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
3INSERM European Unit (IAME, France),University of Fribourg, Fribourg, Switzerland
4University Hospital Center and University of Lausanne, Lausanne, Switzerland
*Corresponding author
E-mail: Linda.mueller@unifr.ch
Antiepileptic drugs (AEDs) are widely used and their number is steadily increasing. Therapeutic drug monitoring of AEDs, when performed correctly, can be a valuable tool for the treating physician. This article describes the indications, limitations and pitfalls that must be observed when measuring and interpreting AED serum concentrations.
by Dr Arne Reimers and Prof. Eylert Brodtkorb
Why measure antiepileptic drug serum concentrations?
Antiepileptic drugs (AEDs) are widely used, not only for epilepsy, but also for a range of non-epilepsy conditions, such as bipolar (manic-depressive) disorder, migraine and neuropathic pain [1]. Thus, the total number of AED users substantially exceeds the number of people with epilepsy. Therapeutic drug monitoring (TDM) has for many years been used to support AED treatment, as many of these drugs have unfavourable pharmacokinetic properties, a potential to problematic drug interactions as well as narrow therapeutic windows. TDM is a means of assisting clinical decision-making and should always be done with a specific question in mind. The general indications for TDM of AEDs are listed in Table 1.
Non-linear and linear pharmacokinetics
TDM of AEDs has a long clinical tradition. When the concept of TDM was introduced in the early 1970s, phenytoin was one of the first drugs to which it was applied [2]. This was mainly because phenytoin, then one of the most frequently used AEDs, has so-called non-linear pharmacokinetics. Linear kinetics means that the serum concentration is linearly correlated with dose – a doubling of the dose will double the serum concentration. This applies to almost all medicinal drugs. However, some drugs exhibit non-linear or saturation kinetics; phenytoin is one of them. Doubling the phenytoin dose may result in an unpredictable increase of the serum concentration. Thus, monitoring the phenytoin serum concentration was desirable and soon became available in large parts of the world.
Most other AEDs, however, exhibit linear kinetics. Why then is it important to measure their serum concentrations? One reason is the nature of epilepsy itself and the issue of prophylactic treatment. The only clinical marker for successful management is the extent of seizure control. However, epileptic seizures may occur in random patterns. The intervals between seizures may be minutes or months, and if a seizure occurs, it may have dramatic consequences, not only for the patient, but even for others. Thus, it can be very demanding to evaluate the therapeutic effect of AED treatment by clinical observation alone.
Absorption, distribution, metabolism and excretion
In addition, the pharmacokinetics of AEDs may be affected by changes in absorption, distribution, metabolism and excretion (ADME). Co-morbidity, pregnancy, drug interactions, pharmacogenetic polymorphisms, etc, all may considerably affect the ADME of AEDs (Fig. 1). Pregnancy may induce pronounced pharmacokinetic alterations, including increased volume of distribution, elevated renal clearance, and induction of hepatic metabolism. Breakthrough seizures in previously seizure-free patients may occur [3–5].
The serum concentration of carbamazepine may rise threefold and produce toxic symptoms when the patient is prescribed certain antibiotics which inhibit its metabolism, such as erythromycin. On the other hand, carbamazepine and other inducers of hepatic metabolism, may reduce serum concentrations of several other drugs, among them valproate, lamotrigine and hormonal contraceptives. Valproate is also a potent inhibitor of drug-metabolizing liver enzymes and may double lamotrigine concentrations. The clinically important induction of the metabolism of lamotrigine by combined oral contraceptives was detected by routine use of TDM [6]. Gabapentin is excreted almost exclusively by the kidneys; hence reduced kidney function will give increased serum concentrations.
Adherence
Poor adherence to prescribed treatment is one of the most important obstacles to the management of epilepsy [7, 8]. It has been documented that roughly half of all patients take their medicine more or less irregularly [9]. A recent study in patients admitted to hospital with acute epileptic seizures found that almost 40 % had less than 75 % of their usual trough AED serum concentration, indicating one or more missed doses [8] (Fig. 2). In such situations, it is crucial that the treating clinician receives the lab result as soon as possible to be able to decide on how to proceed with the management of the patient. Should the daily AED dose be increased or not? In the event that the seizure occurred because of a missed intake, it would not be appropriate; dose increase could even be harmful to the patient. If the serum concentration was adequate (according to prescribed dose), the occurrence of a seizure would suggest that the daily dose was too low and should be increased. This decision must be made quickly as the patient usually will be dismissed from hospital the next morning. It is essential to identify pseudo-refractory epilepsy. Clinically unrecognized non-adherence is often mistaken as drug-resistant epilepsy [10].
How it is normally done
The common convention is that blood samples for measuring the concentration of AEDs be taken drug-fasting in the morning (i.e. from 12 h to a maximum of 24 h after the last dose intake, and before the morning dose). Also, the patient must be in pharmacological steady state. This means that the amount of drug administered per unit time is in equilibrium with the amount of drug eliminated from the body during the same time. For all drugs, this state is reached after five times the drug’s plasma half-life. These rules apply after every dose change (Fig. 2E). The difficulties in complying with these rules are an important obstacle to TDM and is one major reason its routine use is discredited in many parts of the world. If a blood sample is taken before steady state is reached, or when the patient is not drug-fasting, the interpretation of the measured blood concentration is tricky and requires profound clinical-pharmacological experience.
Most commonly, the analyses are performed in a central lab using serum or plasma, either with immunologic or chromatographic methods. Usually, the total AED concentration (protein-bound plus unbound drug) is measured. In certain situations, e.g. in the elderly with hypoalbuminemia or in pregnant women, it is desirable to measure the unbound (free) proportion of an AED. This applies mainly to valproate and phenytoin which are >90 % protein bound. Hypoalbuminemia may cause signs of overdose despite only modest total AED concentration. However, unbound concentrations are rarely requested and not offered by all labs.
Reference ranges for antiepileptic drugs
It must be noted that reference ranges (RRs) for AEDs apply to the treatment of epilepsy. RRs for bipolar disorder have been suggested [11] but are not broadly established, whereas in the treatment of chronic pain states, treatment is usually guided by the clinical response alone. Unfortunately, with few exceptions, most RRs are not well documented. The exceptions are those AEDs that have been around for decades, e.g. phenytoin, carbamazepine and valproate. For them, broadly accepted RRs are supported by long clinical experience.
For the newer AEDs (introduced after 1990), there is a considerable lack of data. One of the reasons for the poor documentation is that drug manufacturers rarely publish serum concentrations obtained in clinical phase III or IV studies. Another reason is a lack of studies specifically aimed at examining the correlation between serum concentrations and effect. Thus, RRs for AEDs are often based on extrapolation of pharmacokinetic data obtained in preclinical studies, or on data from large routine databases, i.e. by applying some sort of population kinetics. Such data often lack clinical correlates owing to incomplete information provided on the request forms.
One consequence of the above is that the RRs used by different labs, and reported in the literature, are often incoherent. Another weakness of these population-based RRs is the fact that many patients achieve a satisfactory therapeutic effect with serum concentrations below the RR, while others need concentrations above the RR, yet without suffering symptoms of overdose. This is also the reason why the term ‘therapeutic range’ should not be used; it wrongly implies that any concentration outside that range is ‘non-therapeutic’.
The concept of individual RRs where each patient serves as his/her own reference [12] is an alternative approach. An obvious prerequisite for this concept is the availability of several consecutive serum concentration measurements (within reasonable time intervals) in the individual patient as well as close clinical follow-up, to correlate various serum concentrations with their corresponding clinical effect. It would also be desirable to have non-sufficient concentrations as well as toxic concentrations. Most of these individual therapeutic ranges would fall within the population-derived RRs. However, as mentioned above, some patients respond well to concentrations outside the common RR. For the sake of clarity, it has been suggested that such individual RRs be called individual therapeutic ranges [13]. Despite its advantages, neither the concept itself nor the term individual therapeutic range can be regarded as generally established.
Concluding remarks
TDM of AEDs is controversial, as it has been repeatedly emphasized that ‘treating patients is more important than treating blood levels’ [14]. Clinical evaluation and follow-up will continue to be the leading element in the management of epilepsy.
Nevertheless, when correctly applied, appropriately sampled and analysed, as well as correctly interpreted, TDM stands out as an important and relatively inexpensive tool for optimizing the drug treatment of epilepsy. Obviously, blinding for the actual serum concentrations may have severe untoward consequences in specific patient populations, such as pregnant women and patients with poor medication-taking behaviour.
References
1. Johannessen Landmark C. Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy. CNS Drugs 2008; 22(1): 27–47.
2. Richens A. Drug estimation in the treatment of epilepsy. Proc R Soc Med 1974; 67(12 Pt 1): 1227–1229.
3. Cappellari AM, Cattaneo D, Clementi E, Kustermann A. Increased levetiracetam clearance and breakthrough seizure in a pregnant patient successfully handled by intensive therapeutic drug monitoring. Ther Drug Monit 2015; 37(3): 285–287.
4. Reimers A, Helde G, Becser Andersen N, Aurlien D, Surlien Navjord E, Haggag K, Christensen J, Lillestølen KM, Nakken KO, Brodtkorb E. Zonisamide serum concentrations during pregnancy. Epilepsy Res 2018; 144: 25–29.
5. Voinescu PE, Park S, Chen LQ, Stowe ZN, Newport DJ, Ritchie JC, Pennell PB. Antiepileptic drug clearances during pregnancy and clinical implications for women with epilepsy. Neurology 2018; 91(13): e1228–1236.
6. Sabers A, Buchholt JM, Uldall P, Hansen EL. Lamotrigine plasma levels reduced by oral contraceptives. Epilepsy Res 2001; 47(1–2): 151–154.
7. Faught E. Adherence to antiepilepsy drug therapy. Epilepsy Behav 2012; 25(3): 297–302.
8. Samsonsen C, Reimers A, Bråthen G, Helde G, Brodtkorb E. Nonadherence to treatment causing acute hospitalizations in people with epilepsy: an observational, prospective study. Epilepsia 2014; 55(11): e125–128.
9. Adherence to long-term therapies: evidence for action World Health Organization 2003; http://www.who.int/chp/knowledge/publications/adherence_report/en/.
10. Brodtkorb E, Samsonsen C, Sund JK, Bråthen G, Helde G, Reimers A. Treatment non-adherence in pseudo-refractory epilepsy. Epilepsy Res 2016; 122: 1–6.
11. Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, Eckermann G, Egberts K, Gerlach M, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry 2018; 51(1–02): 9–62.
12. Landmark CJ, Johannessen SI, Tomson T. Dosing strategies for antiepileptic drugs: from a standard dose for all to individualised treatment by implementation of therapeutic drug monitoring. Epileptic Disord 2016; 18(4): 367–83.
13. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E. Antiepileptic drugs – best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 2008; 49(7): 1239–1276.
14. Chadwick DW. Overuse of monitoring of blood concentrations of antiepileptic drugs. Br Med J (Clin Res Ed) 1987; 294(6574): 723–724.
The authors
Arne Reimers*1,2 MD PhD and Eylert Brodtkorb3,4 MD PhD
1Dept. of Clinical Chemistry and Pharmacology, Division of Laboratory Medicine, Skåne University Hospital, Lund, Sweden
2Department of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden
3Dept. of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
4Dept. of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
*Corresponding author
E-mail: arne.reimers@med.lu.se
November 2024
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Beukenlaan 137
5616 VD Eindhoven
The Netherlands
+31 85064 55 82
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy