Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: Featured Articles

Featured Articles

C318 Fig 1 Dambinova et al

Laboratory assessment of mild traumatic brain injury by use of neurotoxicity biomarkers

, 26 August 2020/in Featured Articles /by 3wmedia

Mild traumatic brain injury (mTBI) and concussion from sporting/recreational activities are relatively common. However, assessment of mTBI is difficult and many incidents of mTBI and concussion are unrecognized and/or not reported. Levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) peptide, a product of the proteolytic degradation of AMPA receptors, have been found to be raised in mTBI and the development of point-of-care (POC) tests based on the recognition of the AMPAR peptide is underway. Such POC tests will be useful at the pitch sideline or in the combat field for aiding objective diagnosis and management of subtle brain injury.

by Prof. Svetlana A. Dambinova, Rozalyn Heath and Dr Galina A. Izykenova

Introduction
Mild traumatic brain injury (mTBI) including concussion is the most frequent form of injury in military and civilian settings with the highest prevalence among young adults aged 15 to 24 years. Each year sports and recreational activities contribute about 3.8 million cases of mTBI in the USA [1], whereas brain injuries caused by explosions are the most common combat wounds in the military arena.

Assessment of mTBI regardless of origin is complicated. Many primary mTBIs, and particularly concussions, go unrecognized or are not reported when there is no loss of consciousness. Additionally, without sufficient reports of previous incidents, soldiers and competitive athletes are often subjected to multiple concussions. There are several challenges to identify immediate (or primary acute and subacute within 24 hours and up to 2 weeks respectively) impact, secondary (beyond 14 days) and cumulative (brain-related seizures) consequences that might follow multiple concussions or mTBI.

Normally, acute subclinical concussions associated with micro-edema formation that is reversible and not visible on conventional computed tomography and magnetic resonance imaging (MRI) methods. Advanced neuroimaging techniques (diffusion tensor imaging, functional MRI, and positron emission tomography) that can register minor structural and microvascular changes are primarily used for research. These modalities are not available in emergency situations or for routine clinical evaluations and have a limited application in persons with metal implants [2] or claustrophobia [3].

Currently, there is an unmet diagnostic need to reveal brain micro-damage following concussion by use of a rapid and affordable assay detecting, for instance, neurotoxicity (immunoexcitotoxicity) biomarkers in the bloodstream [4]. Analogous to NR2 peptide as a biomarker for cortical lesions in transient ischemic attack (TIA)/strokes [5], we proposed that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) peptide marker is able to differentiate subtle brain injury in white matter associated with concussions.

Neurotoxicity biomarkers in mTBI
It is known that the family of ionotropic glutamate receptors (GluRs) implying N-methyl-D-aspartate (NMDAR), AMPAR and kainite receptors are involved in the regulation of synaptic connectivity in cortical/subcortical and brainstem areas [4,5]. Recently, it was shown that AMPAR represents a biomarker for the neurotoxicity cascade underlying subtle brain injury [6].

The family of location-specific GluRs is involved in more than 80% of cortical and subcortical neuronal communications underlying superior mental functions [7]. AMPAR is primarily distributed in the forebrain and subcortical pathways [8], and strategically located on surfaces of small cerebral arteries regulating blood circulations in white matter substructures [9]. Symptomatically the impact to brain may lead to executive brain dysfunctions associated with subcortical areas. Visual and cognitive deficits (including problems with memory, intellect, concentration and attention) might be an aftermath of subtle repetitive injuries to deep brain structures due to more severe cases of mTBI.

In acute and subacute phases of mTBI, a massive release of glutamate, which upregulates excitotoxic AMPARs has been detected [4]. The GluR1-subunit of N-terminal AMPAR fragments is rapidly cleaved by extracellular proteases and fragments carrying immune active epitopes released into the bloodstream through the compromised blood–brain barrier (BBB). This degradation product can be detected directly in the blood as AMPAR peptide fragments (molecular weight 5–7 kDa) [4]. The protective effects of a compromised BBB impacting neurotoxicity are exacerbated further when accompanied by a delayed immunological response generating peripheral anti-CNS antibodies [10].

Concussion assays development
To detect AMPAR peptide, magnetic-particle-based enzyme-linked immunosorbent assay (MP-ELISA) containing unique reagents has been developed. MP-ELISA involved a sandwich or ‘bridging’ assay where the suspended in solution microparticles coated by capture antibodies are binding to two epitopes of AMPAR peptide and reaction is revealed by probe-detection antibodies (Fig. 1). The probe is an enzyme that generates a colour reaction. The assay includes control samples (reference standards) produced synthetically or as a fusion human protein.

A feasibility study detecting the AMPAR peptide in a single blood draw taken from club sport athletes and professional football players in acute and subacute stage of concussions evaluated cut-offs of 0.4 and 1.0 ng/mL respectively for the assessment of single and recurrent concussions (Table 1) [11,12]. The predictive value of the test was assessed as 91% with a likelihood ratio of 11–12 for recognizing individuals with mTBI. If the test at a cut-off point of 0.4 ng/mL was negative, the post-test probability for a single concussion would be <4%.

AMPAR peptide concentrations in plasma for a military cohort suffering mTBI showed increased levels with an average concentration of 2.98 ng/mL [13]. In this study, the optimal cut-off value for recurrent mTBI was similar to professional players (Table 1), at which a positive predictive value of 93% was achieved. The trade-offs between true-positive and false-positive yielded in an area under the receiver operating characteristic (ROC) curve of 0.97.

Early experimental and clinical research of antibodies to AMPA receptors (AMPAR Ab) as an immunoexcitotoxicity biomarker has demonstrated their diagnostic value in detecting pathological brain-spiking activity and epileptic seizures [14,15] as a consequence of traumatic brain injury, thereby representing a prognostic risk factor [16]. Clinical studies of GluR1 antibodies in adult patients with different chronic neurological pathology (n=1866) performed in Russia, Germany, Ireland, Poland and the USA have demonstrated diagnostic potential (sensitivity of 86%-88% and specificity of 83–97%) in assessment of post-traumatic seizures.

In sport-related multiple concussions, AMPAR Ab values remained abnormally high in the blood of some athletes who had headaches and visual problems. It was suggested that this finding may reflect persistent changes in the subcortical areas of the brain. The diagnostic value of AMPAR Ab (sensitivity of 86–88%, specificity of 83–97% at 1.5 ng/ml cut-off) in assessment of seizures defined by electroencephalogram (EEG) with history of sustained single or multiple TBI have been demonstrated for children and adult patients indicating a development of ‘chronic’ conditions [13].

Sideline testing of AMPAR peptide and antibody
Recognizing the medical need for sideline testing for mTBI (largely for emergency care), a point-of-care (POC) testing platform has been recently undertaken for AMPAR peptide and antibody assays are being tested in clinical studies (www.drdbiotech.com).

A lateral flow sandwich assay to detect AMPAR Ab consists of a blood filtering sample pad, a pad containing gold nanoshells conjugated to protein A, a nitrocellulose strip with immobilized AMPAR peptide, a control line, and a cellulose absorbent. Applied to the blood filter, erythrocytes are removed from the sample, which passes to the conjugate pad where AMPAR IgGs are captured by protein A. When the complex reaches the peptide test line stripe on nitrocellulose, it binds to the test line yielding a visible signal with intensity proportional to the concentration of the AMPAR Ab presented in the sample (Fig. 2).

The control line then captures a portion of the remaining nanoshells regardless of the presence or absence of the peptide (Fig. 3).

The AMPAR peptide prototype test that works on a similar principle, employed gold nanoparticles as the signal-generating species covalently bound to specific antibodies against AMPAR peptide. This assay captures the AMPAR peptide from the blood sample between two different Abs, one immobilized on the nitrocellulose and the other on the gold nanoshells. This ‘bridging’ of the analyte leads to the immobilization of the particles at the test line producing a colour signal.

Conclusion
The laboratory assessment of concussion at the pitch sideline in competitive contact sports or on the field of combat is required to assist in the objective confirmation of when an injured athlete should return to play or a soldier may return to duty. Accurate diagnosis of concussion and appropriate management of subtle brain injury to prevent damage to the long-term health of athletes and others at risk of re-injury. Specific brain biomarkers detected by a rapid blood test would have important diagnostic/prognostic capabilities, particularly for concussion, to objectively evaluate early signs of further brain-function deterioration and assist in navigating personalized therapy when required. Clinical use of blood tests can reliably detect subtle brain impact, predict consequences and aid in triaging persons with persistent symptoms after a recurrent concussion for diffuse tensor or diffuse-weighted imaging modalities of MRI [17].

Early identification of concussion has the potential to become a key component of a successful treatment strategy and outcome monitoring. Advances in analytical assay technologies have made it possible to develop a rapid, cost-effective test that can be used to target populations and select a risk group for post-traumatic seizures to direct to the immediate attention of a specialist.

The opportunity of using ‘yes/no’ lateral flow tests without a need for an instrumental readout, being simply read by eye, would make a huge difference in supplying coaches with reliable, simple and rapid tests in return-to-play decisions. There is also a high demand for portable POC tests for mTBI diagnosis in military combat and civilian emergency settings.

References
1. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States. Emergency department visits, hospitalizations, and deaths 2002–2006. Atlanta, GA. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control 2010 (https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf).
2. Klinke T, Daboul A, Maron J,  Gredes T, Puls R, Jaghsi A, Biffar R. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. PLoS One 2012; 7: e31766–31771.
3. Napp AE, Enders J, Roehle R, Diederichs G, Rief M, Zimmermann E, Martus P, Dewey M. Analysis and prediction of claustrophobia during MR imaging with the Claustrophobia Questionnaire: an observational prospective 18-month single-center study of 6500 patients. Radiology 2017; 283: 148–157.
4. Dambinova SA. Diagnostic challenges in traumatic brain injury. IVD Technology 2007; 3: 3–7.
5. Dambinova SA. Biomarkers for transient ischemic attack (TIA) and ischemic stroke. Clin Lab Inter 2008; 32: 7–10.
6. Danilenko UD, Khunteev GA, Bagumyan A, Izykenova GA. Neurotoxicity biomarkers in experimental acute and chronic brain injury. In: Dambinova SA, Hayes RL, Wang KKW (editors). Biomarkers for TBI. RSC Publishing, RSC Drug Discovery Series 2012; pp87–98.
7. Gill S, Pulido O. Glutamate receptors in peripheral tissue. In: Gill S, Pulido O (editors). Excitatory transmission outside the CNS. Kluwer Academic Publishers 2010; p3.
8. Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador-Woodruff JH. Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia.  Neuropsychopharmacology 2010; 35: 2110–2119.
9. Christensen PC, Samadi-Bahrami Z, Pavlov V, Stys PK, Moore GR. Ionotropic glutamate receptor expression in human white matter.  Neurosci Lett 2016; 630: 1–8.
10. Raad M, Nohra E, Chams N, Itani M, Talih F, Mondello S, Kobeissy F. Autoantibodies in traumatic brain injury and central nervous system trauma. Neuroscience 2014; 281: 16–23.
11. Dambinova SA, Shikuev AV, Weissman JD, Mullins JD. AMPAR peptide values in blood of nonathletes and club sport athletes with concussions. Mil Med 2013; 3: 285–290.
12. Dambinova SA, Maroon JC, Sufrinko AM, Mullins JD, Alexandrova EV, Potapov AA. Functional, structural, and neurotoxicity biomarkers in integrative assessment of concussions. Front Neurol 2016; 7: 172.
13. Mullins JD. Biomarkers of TBI: implications for diagnosis and management of contusions. AMSUS 118th Annual Continuing Education Meeting. Seattle, WA, USA 2013; 147. (http://amsusce.org/wp-content/uploads/2015/05/Abstract-Summaries-10.22.13.2.pdf)
14. Dambinova SA, Izykenova GA, Burov SV, Grigorenko EV, Gromov SA. The presence of autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptor in the blood serum of patients with epilepsy. J Neurol Sci 1997; 152: 93–97.
15. Dambinova SA, Granstrem OK, Tourov A, Salluzzo R, Castello F, Izykenova GA. Monitoring of brain spiking activity and autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptors in blood serum of rats with cobalt-induced epilepsy. J Neurochem 1998; 71: 2088–2093.
16. Goryunova AV, Bazarnaya NA, Sorokina EG, Semenova NY, Globa OV, Semenova ZhB, Pinelis VG, Roshal’ LM, Maslova OI. Glutamate receptor antibody concentrations in children with chronic post-traumatic headache. Neurosci Behav Physiol  2007; 37:761–764.
17. Bonow RH, Friedman SD, Perez FA, Ellenbogen RG, Browd SR, MacDonald CL, Vavilala MS, Rivara FP. Prevalence of abnormal magnetic resonance imaging findings in children with persistent symptoms after pediatric sports-related concussion. J Neurotrauma 2017; 34: 1–7.

The authors
Svetlana A Dambinova*1 DSc, PhD; Rozalyn Heath1; Galina A Izykenova2 PhD
1Brain Biomarkers Research Laboratory, DeKalb Medical Center, Decatur, GA, USA
2GRACE Laboratories, LLC, Atlanta, GA, USA

*Corresponding author
E-mail: dambinova@aol.com

https://clinlabint.com/wp-content/uploads/sites/2/2020/08/C318_Fig-1_Dambinova-et-al.jpg 748 600 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:43Laboratory assessment of mild traumatic brain injury by use of neurotoxicity biomarkers
27438 Greiner advertorial

MiniCollect meets carrier tube – the perfect combination

, 26 August 2020/in Featured Articles /by 3wmedia
https://clinlabint.com/wp-content/uploads/sites/2/2020/08/27438-Greiner-advertorial.jpg 2112 1500 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:33MiniCollect meets carrier tube – the perfect combination
Anunci BA200 medica DINA4 1

STAT and Routine Laboratories Benchtop Random Clinical Chemistry Analyzer

, 26 August 2020/in Featured Articles /by 3wmedia
https://clinlabint.com/wp-content/uploads/sites/2/2020/08/Anunci-BA200-medica-DINA4-_1_.jpg 1415 1000 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:38STAT and Routine Laboratories Benchtop Random Clinical Chemistry Analyzer
Scientific Lit picture 06

Scientific literature review: Kidney disease markers

, 26 August 2020/in Featured Articles /by 3wmedia

Biomarkers of diabetic nephropathy: A 2017 update
Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP, Papassotiriou I. Crit Rev Clin Lab Sci 2017; 54(5): 326–342
Diabetic nephropathy (DN), also named diabetic kidney disease (DKD), is a devastating complication in patients with both type 1 and 2 diabetes mellitus (T1D and T2D) and its diagnosis has been traditionally based on the presence of micro-albuminuria (MA). The aim of this article is to update, through review of the relevant medical literature, the most promising biomarkers for early DKD detection. MA has historically been employed as an early marker of microvascular complications, indicating risk for advanced CKD. However, due to the inability of MA to adequately predict DKD, especially in young patients or in non-albuminuric DKD, additional biomarkers of glomerular and/or tubular injury have been proposed to uncover early renal dysfunction and structural lesions, even before MA occurs. Defining new predictive biomarkers to use alongside urinary albumin excretion (UAE) during the initial stages of DKD would provide a window of opportunity for preventive and/or therapeutic interventions to prevent or delay the onset of irreversible long-term complications and to improve outcomes by minimizing the rates of severe cardio-renal morbidity and mortality in DKD patients.

Urinary angiotensinogen and renin excretion are associated with chronic kidney disease
Juretzko A, Steinbach A, Hannemann A, Endlich K, Endlich N et al. Kidney Blood Press Res 2017; 42(1): 145–155
BACKGROUND/AIMS: Several studies sought to identify new biomarkers for chronic kidney disease (CKD). As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR). We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria.

METHODS: We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC) curves, spearman correlation coefficients and linear regression models were calculated.

RESULTS: Urinary angiotensinogen [2 511 (196–31 909) vs 18.6 (8.3–44.0) pmol/g, *P<0.01] and renin excretion [0.311 (0.135–1.155) vs 0.069 (0.045–0.148) pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient  −2.405, standard error 0.117, P<0.01) and renin excretion (ß-coefficient −0.793, standard error 0.061, P<0.01) were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results.

CONCLUSION: Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may convey additional information beyond that provided by albuminuria.

KIM-1 Is a potential urinary biomarker of obstruction: results from a prospective cohort study
Olvera-Posada D, Dayarathna T, Dion M, Alenezi H, Sener A et al. J Endourol 2017; 31(2): 111–118
INTRODUCTION: Partial or complete obstruction of the urinary tract is a common and challenging urological condition that may occur in patients of any age. Serum creatinine is the most commonly used method to evaluate global renal function, although it has low sensitivity for early changes in the glomerular filtration rate or unilateral renal pathology. Hence, finding another measurable parameter that reflects the adaptation of the renal physiology to these circumstances is important. Several recent studies have assessed the use of new biomarkers of acute kidney injury (AKI), but the information among patients with stone disease and those with obstructive uropathy is limited.
MATERIAL AND METHODS: A prospective cohort study was conducted to determine the urinary levels of kidney injury molecule-1 (KIM-1), Total and Monomeric neutrophil gelatinase-associated lipocalin (NGAL) in patients with hydronephrosis secondary to renal stone disease, congenital ureteropelvic junction obstruction or ureteral stricture. Comparison between patients with hydronephrosis and no hydronephrosis was carried out along with correlation analysis to detect factors associated with biomarker expression.

RESULTS: Urinary levels of KIM-1 significantly decreased after hydronephrosis treatment in patients with unilateral obstruction (1.19 ng/mL vs 0.76 ng/mL creatinine, P=0.002), additionally KIM-1 was significantly higher in patients with hydronephrosis compared to stone disease patients without radiological evidence of obstruction (1.19 vs 0.64, P=0.006). Total and Monomeric NGAL showed a moderate correlation with the presence of leukocyturia. We found that a KIM-1 value of 0.735 ng/mg creatinine had a sensitivity of 75% and specificity of 67% to predict the presence of hydronephrosis in preoperative studies (95% CI 0.58-0.87, P = 0.006).

CONCLUSION: Our results show that KIM-1 is a promising biomarker of subclinical AKI associated with hydronephrosis in urological patients. NGAL values were influenced by the presence of leukocyturia, limiting its usefulness in this population.

Heparin-binding protein (HBP) improves prediction of sepsis-related acute kidney injury
Tverring J, Vaara ST, Fisher J, Poukkanen M et al. Ann Intensive Care 2017; 7(1): 105
BACKGROUND: Sepsis-related acute kidney injury (AKI) accounts for major morbidity and mortality among the critically ill. Heparin-binding protein (HBP) is a promising biomarker in predicting development and prognosis of severe sepsis and septic shock that has recently been proposed to be involved in the pathophysiology of AKI. The objective of this study was to investigate the added predictive value of measuring plasma HBP on admission to the intensive care unit (ICU) regarding the development of septic AKI.

METHODS: We included 601 patients with severe sepsis or septic shock from the prospective, observational FINNAKI study conducted in seventeen Finnish ICUs during a 5-month period (1 September 2011-1 February 2012). The main outcome measure was the development of KDIGO AKI stages 2–3 from 12 h after admission up to 5 days. Statistical analysis for the primary endpoint included construction of a clinical risk model, area under the receiver operating curve (ROC area), category-free net reclassification index (cfNRI) and integrated discrimination improvement (IDI) with 95% confidence intervals (95% CI).

RESULTS: Out of 511 eligible patients, 101 (20%) reached the primary endpoint. The addition of plasma HBP to a clinical risk model significantly increased ROC area (0.82 vs 0.78, P=0.03) and risk classification scores: cfNRI 62.0% (95% CI 40.5–82.4%) and IDI 0.053 (95% CI 0.029–0.075).

CONCLUSIONS: Plasma HBP adds predictive value to known clinical risk factors in septic AKI. Further studies are warranted to compare the predictive performance of plasma HBP to other novel AKI biomarkers.


Prediction of contrast induced acute kidney injury using novel biomarkers following contrast coronary angiography

Connolly M, Kinnin M, McEneaney D, Menown I et al. QJM. 2017; doi: 10.1093/qjmed/hcx201
BACKGROUND: Chronic kidney disease (CKD) is a risk factor for contrast-induced acute kidney injury (CI-AKI). Contrast angiography in CKD patients is a common procedure. Creatinine is a delayed marker of CI-AKI and delays diagnosis which results in significant morbidity and mortality.

AIM: Early diagnosis of CI-AKI requires validated novel biomarkers.

DESIGN: A prospective observation study of 301 consecutive CKD patients undergoing coronary angiography was performed. Samples for plasma neutrophil gelatinase-associated lipocalin (NGAL), serum liver fatty acid-binding protein (L-FABP), serum kidney injury marker 1 (KIM-1), serum interleukin 18 (IL-18) and serum creatinine were taken at 0, 1, 2, 4, 6 and 48 hours post contrast. Urinary NGAL and urinary cystatin C (CysC) were collected at 0, 6 and 48 hours. Incidence of major adverse clinical events (MACE) were recorded at 1 year. CI-AKI was defined as an absolute delta rise in creatinine of ≥26.5µmol/L or a 50% relative rise from baseline at 48 hours following contrast.
RESULTS: CI-AKI occurred in 28 (9.3%) patients. Plasma NGAL was most predictive of CI-AKI at 6 hours. L-FABP performed best at 4 hours.A combination of Mehran score >10, 4-hour L-FABP and 6-hour NGAL improved specificity to 96.7%. MACE was statistically higher at one year in CI-AKI patients (25.0% versus 6.2% in non CI-AKI patients).

CONCLUSIONS: Mehran risk score, 4 hour serum L-FAPB and 6 hour plasma NGAL performed best at early CI-AKI prediction. CI-AKI patients were four times more likely to develop MACE and had a trebling of mortality risk at 1 year.

Upregulation of long noncoding RNA PVT1 predicts unfavorable prognosis in patients with clear cell renal cell carcinoma
Bao X, Duan J, Yan Y, Ma X et al. Cancer Biomark 2017; doi: 10.3233/CBM-170251
BACKGROUND: Renal cell carcinoma (RCC) is one of the most malignant genitourinary diseases worldwide. Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs in the human genome that are involved in RCC initiation and progression.

OBJECTIVE: To investigate the expression of PVT1 in ccRCC and evaluate its correlation with clinicopathologic characteristics and patients’ survival.

METHODS: Quantitative real-time PCR was performed to examine PVT1 expression in 129 ccRCC tissue samples and matched adjacent normal tissue samples. The relationship of PVT1 expression with clinicopathologic characteristics and clinical outcome was evaluated.

RESULTS: We identified the lncRNA PVT1, which was upregulated in clear cell renal cell carcinoma (ccRCC) tissues when compared with corresponding controls. Furthermore, PVT1 expression was positively associated with gender, tumor size, pT stage, TNM stage, and Fuhrman grade. Kaplan-Meier survival analysis showed that patients with high PVT1 expression had shorter disease-free survival (DFS) and overall-survival (OS) than those with low PVT1 expression, and multivariate analysis identified PVT1 as an independent prognostic factor in ccRCC.

CONCLUSIONS:
PVT1 may be an oncogene as well as may promote metastasis in ccRCC and could serve as a potential biomarker to predict the prognosis of ccRCC patients.

Urine S100 proteins as potential biomarkers of lupus nephritis activity
Turnier JL, Fall N, Thornton S, Witte D et al.
BACKGROUND: Improved, non-invasive biomarkers are needed to accurately detect lupus nephritis (LN) activity. The purpose of this study was to evaluate five S100 proteins (S100A4, S100A6, S100A8/9, and S100A12) in both serum and urine as potential biomarkers of global and renal system-specific disease activity in childhood-onset systemic lupus erythematosus (cSLE).

METHODS: In this multicentre study, S100 proteins were measured in the serum and urine of four cSLE cohorts and healthy control subjects using commercial enzyme-linked immunosorbent assays. Patients were divided into cohorts on the basis of biospecimen availability: (1) longitudinal serum, (2) longitudinal urine, (3) cross-sectional serum, and (4) cross-sectional urine. Global and renal disease activity were defined using the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and the SLEDAI-2K renal domain score. Nonparametric testing was used for statistical analysis, including the Wilcoxon signed-rank test, Kruskal-Wallis test, Mann-Whitney U test, and Spearman’s rank correlation coefficient.

RESULTS: All urine S100 proteins were elevated in patients with active LN compared with patients with active extrarenal disease and healthy control subjects. All urine S100 protein levels decreased with LN improvement, with S100A4 demonstrating the most significant decrease. Urine S100A4 levels were also higher with proliferative LN than with membranous LN. S100A4 staining in the kidney localized to mononuclear cells, podocytes, and distal tubular epithelial cells. Regardless of the S100 protein tested, serum levels did not change with cSLE improvement.

CONCLUSIONS: Higher urine S100 levels are associated with increased LN activity in cSLE, whereas serum S100 levels do not correlate with disease activity. Urine S100A4 shows the most promise as an LN activity biomarker, given its pronounced decrease with LN improvement, isolated elevation in urine, and positive staining in resident renal cells.

https://clinlabint.com/wp-content/uploads/sites/2/2020/08/Scientific-Lit-picture_06.jpg 533 800 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:28Scientific literature review: Kidney disease markers

EUROLabWorkstation – Full automation of ELISA or IFA

, 26 August 2020/in Featured Articles /by 3wmedia
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:38EUROLabWorkstation – Full automation of ELISA or IFA
27509 Medix BR AACC 2017 CLI 92x178 HR

MedixMAB Antibodies – Medix Antigens

, 26 August 2020/in Featured Articles /by 3wmedia
https://clinlabint.com/wp-content/uploads/sites/2/2020/08/27509-Medix-BR-AACC-2017_CLI_92x178_HR.jpg 1500 772 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:50MedixMAB Antibodies – Medix Antigens
27533 AD0109 RevB V3 StatProfilePRIMEPlus

A Technology Evolution in Critical Care Testing

, 26 August 2020/in Featured Articles /by 3wmedia
https://clinlabint.com/wp-content/uploads/sites/2/2020/08/27533_AD0109-RevB-V3-StatProfilePRIMEPlus.jpg 1500 1165 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:46A Technology Evolution in Critical Care Testing
C324 McCann fig1 crop

Calprotectin use in primary care. Are testing criteria being followed?

, 26 August 2020/in Featured Articles /by 3wmedia

In 2013, the National Institute for Health and Care Excellence (NICE) published guidelines recommending the use of fecal calprotectin as a screening test for differentiating between inflammatory bowel disease and irritable bowel syndrome. Since then, despite a relatively slow uptake with only a few laboratories offering the test, fecal calprotectin has garnered much interest with more hospitals incorporating it into their pathology services. Therefore, the question of how well primary care is using the service arises. This, along with a brief historical context of inflammatory bowel disease and its diagnosis together with implications of calprotectin testing are discussed here.

by Dr Benjamin Palmer, Dr Wisam Jafar and Steven McCann

Historical context
Inflammatory bowel disease (IBD) is a term used to describe two relapsing chronic gastrointestinal disorders: ulcerative colitis (UC) and Crohn’s disease (CD). Both cause considerable morbidity amongst young patients in whom they occur more frequently [1]. With an estimated prevalence of 2.5–3.0 million people affected in Europe the incidence of IBD is increasing [1]. Although the etiology of IBD is unknown several theories have been put forward the most important and frequently cited elements being: gut microbiota; genetic pre-disposition; environment and immune dysregulation [2]. The two main types of IBD seen in the clinical setting are UC and CD: definitive diagnosis and confirmation is provided by endoscopy and histology. However, in 5% of cases a definitive diagnosis cannot be established: in such cases patients are diagnosed with inflammatory bowel disease unclassified (IBDU) [3, 4].

The gastrointestinal tract is colonized by a large number of diverse bacteria living in symbiosis with their host (microbiota) [5]. Disruption to the diversity and quality of the gut microbiota (dysbiosis) is now implicated in the pathogenesis of both UC and CD [2, 5, 6]. Other important participants are cytokines: as their release causes intestinal inflammation they have been implicated in some of the clinical symptoms such as diarrhea [7–9].

Historically, the two types of IBD were differentiated by the different cytokines and mature CD4+ T helper (Th) cells found elevated in tissue biopsies. UC was characterized by elevated levels of Th2 cells and interleukin (IL)-4, -5, -10 and -13 cytokines, whereas CD was defined by high levels of Th1 cells and the interferon gamma (IFNγ) cytokine [3]. However, new emerging information suggests that it is not as cut and dried as this: emphasis has now shifted towards such pathways as IL-23/IL-17 activation of more pathogenic Th17 cells playing a more significant role in the pathophysiology of not just IBD but other inflammatory diseases [10].

Complicating the clinical scenario is the high prevalence (around 10−20% of the UK population) of an unrelated functional bowel disorder called irritable bowel syndrome (IBS): the true prevalence is thought to be higher as it is suspected that many people may not seek medical advice [11]. Although it does not cause serious morbidities, IBS manifests with symptoms similar to those of IBD, making diagnosis difficult. Unlike IBD, it is not associated with inflammation and, hence, this provides a means of making a differential diagnosis.
Until recently, the diagnosis of IBD was made by clinical evaluation and a combination of biochemical and mainly endoscopic investigations that often involved repeat consultations and testing [3]. This, taken together with an ageing population, an increased public awareness of bowel cancer and the introduction of national screening campaigns has led to increased service demands in endoscopy. The fact that fecal markers, such as calprotectin, are secreted by inflamed intestinal mucosa has led to the development of laboratory assays that can detect gastrointestinal inflammation. It was because of these challenges and recent developments that led the National Institute for Health and Care Excellence (NICE) to publish guidelines on the use of fecal calprotectin in differentiating IBD from IBS in adults provided cancer is not suspected and that local reporting guidelines along with appropriate quality assurance procedures are in place [12]. A cut-off of 50 μg/g is recommended in which all patients with a calprotectin level ≥50 μg/g may be suggestive of IBD and should be referred to Gastroenterology, whereas a calprotectin level <50 μg/g is unlikely to be caused by IBD and should, therefore, be managed with a presumptive diagnosis of IBS [12]. One key study used by NICE in recommending this threshold was carried out by Tibble et al. in which 602 outpatients with lower gastrointestinal tract symptom were included [13]. In this study the authors clearly demonstrated that the IBD group of patients differed significantly (P=0.001–<0.0001) from the IBS group of patients and that a cut-off level of 10 mg/L (equivalent to 50 μg/g) provided optimal diagnostic performance [13]. However, the cut-off level of any test is dependent on the method used and, therefore, each laboratory should establish their method-specific cut-off level [12].

IBD pathway and audit outcome
Following the recommendations of NICE, fecal calprotectin testing was incorporated into the pathology services at Stepping Hill hospital on 1 November 2014. The test is available for patients from primary care between 20 and 40 years of age who are presenting with abdominal pain or discomfort, bloating or altered bowel habits for 6 months or longer. Patients with red flag symptoms (anemia, abdominal mass, gastrointestinal infection, rectal bleeding, unexplained weight loss or a family history of ovarian or bowel cancer) should be referred directly to Gastroenterology (Fig. 1).

If the calprotectin test is negative the patient should be managed by primary care with a presumptive diagnosis of IBS; if the test is positive the patient should be referred to Gastroenterology. Then in 2016 a 1-year retrospective audit was carried out with the aim of determining how well primary care was adhering to the clinical pathway [14]. In order to achieve this, a questionnaire was designed and sent to all primary care surgeries in the catchment area for each patient who received calprotectin testing (n=587): the responses (n=217) to these questionnaires were then compared to the IBD pathway [14].

The outcome of this audit revealed that most areas of the IBD pathway were not being adhered to and, therefore, GP re-education and training was needed; a similar finding to another hospital [10]. The worst area of non-conformance was to ensure that patients had had signs/symptoms for at least 6 months: 69% of requests were not compliant [14]. Exclusion of gastrointestinal infection was second (63%), followed by ensuring age was 20–40 years (48%) [14]. Of the 216 questionnaires returned, 35% of patients had had red flag signs/symptoms at the time of the request [14]. Alarmingly, rectal bleeding was the most frequently encountered, followed by anemia, unexplained weight loss and a family history of bowel/ovarian cancer [14]. None of the patients had abdominal mass [14]. Conversely, high compliance was observed for the withdrawal of non-steroidal inflammatory drugs (NSAIDs) and antibiotics before testing [14]. Overall, only 24 requests (11%) were fully compliant for all criteria of the IBD clinical pathway [14].

Patient/clinician considerations
Unlike other fecal markers such as elastase, calprotectin is much less stable (up to 3 days at room temperature) and, therefore, it is important that patient samples are sent to the laboratory within 72 hours of collection [16]. It is still the case that samples are received by the laboratory with no date or time of collection and these are consequently rejected for analysis. Considering that calprotectin is elevated in gastrointestinal infection, in order for the test to be of clinical use, it is imperative that this is excluded.

The age restriction imposed on calprotectin testing is important and is based on the fact that IBS is more common in younger adults, that the prevalence of IBS decreases with increasing age and that new onset of symptoms after 50 years is uncommon [11, 17]. By focusing on this age group a large number of patients who do not require diagnostic testing will be excluded and, therefore, they will not add to the delay that current IBD sufferers face in receiving a colonoscopy.

Patients >40 years of age should be referred to Gastroenterology without delay, as the risk of developing colorectal cancer increases with age: colorectal cancer is the third most commonly diagnosed cancer in the UK and one of the major complications of IBD [18].

Since IBD is a relapsing disease the clinician should be aware that screening results from some patients with IBD may be negative, particularly if the disease is in a period of remittance and, therefore, the presentation of the patient, not the test result, should be the ultimate deciding factor over whether to refer. Finally, underpinning this is the need for local laboratories to determine their own method-specific cut-off values using evidence-based medicine. As with all screening tests the aim should be to optimize the test’s ability to exclude disease (IBS) so that fewer patients without disease are referred.

References
1. Trbojevic Akmacic I, Ventham NT, Theodoratou E, Vuckovic F, Kennedy NA, Krištic J, Nimmo ER, Kalla R, Drummond H, et al. Inflammatory bowel disease associates with proinflammatory potenial of the immunoglobulin G glycome. Inflamm Bowel Dis 2015; 21: 1237–1247.
2. de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 2016; 186: 13–27.
3. Odze R. Diagnostic problems and advances in inflammatory bowel disease. Mod Pathol 2003; 16(4): 347–358.
4. Magro F, Giochetti P, Eliakim R, Ardissone S, Armuzzi A, Barreiro-de Acosta M, Burisch J, Gecse KB, Hart AL, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery and ileo-anal pouch disorders. J Crohns Colitis 2017; 11(6): 649–670.
5. Salim SY, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory diseases. Inflamm Bowel Dis 2011; 17(1): 362–381.
6. Ni J, Wu GD, Alenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 2017; 14(10): 573–584.
7. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol 2014; 14(5): 329–342.
8. Műzes G, Molnár B, Tulassay Z, Sipos F. Changes of the cytokine profile in inflammatory bowel diseases. World J Gastroenterol 2012; 18(41): 5848–5861.
9. Ohama T, Hori M, Sato K, Ozaki H, Karaki H. Chronic treatment with interleukin-1β attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J Biol Chem 2003; 278(49): 48794–48804.
10. Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006; 116(5): 1218–1222.
11. National Institute for Health and Care Excellence (NICE). Irritable bowel syndrome in adults: diagnosis and management of irritable bowel syndrome in primary care. NICE Clinical Guideline 61, 2008 (https://www.nice.org.uk/guidance/cg61).
12. NICE. Faecal calprotectin diagnostic tests for inflammatory diseases of the bowel. NICE Diagnostics Guidance 11, 2013 (https://www.nice.org.uk/guidance/dg11).
13. Tibble J, Teahon K, Thjodleifsson B, Roseth A, Sigthorsson G, Bridger S, Foster R, Sherwood R, Fagerhol M, Bjarnason I. A simple method for assessing intestinal inflammation in Crohn’s disease. Gut 2000; 47: 506–513.
14. Palmer B, McCann S. A one year retrospective audit on calprotectin: how well is primary care adhering to the pathway for inflammatory bowel disease. Poster presented at Focus 2017, the Association of Clinical Biochemistry national annual meeting.
15. Turvill J. Evaluation of guidelines for the use of faecal calprotectin testing in primary care. NICE 2015. (https://www.nice.org.uk/sharedlearning/evaluation-of-guidelines-for-the-use-of-faecal-calprotectin-testing-in-primary-care).
16. Tøn H1, Brandsnes, Dale S, Holtlund J, Skuibina E, Schjønsby H, Johne B. Improved assay for faecal calprotectin. Clin Chim Acta 2000; 292: 41–54.
17. Halland M, Saito YA. Irritable syndrome: new and emerging treatments. BMJ 2015; 350: h1622.
18. Adelstein B, Macaskill P, Chan SF, Katelaris PH, Irwig L. Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review. BMC gastroenterol 2011; 11: 65–74.

The authors
Benjamin Palmer*1 PhD, MRSC; Wisam Jafar2 MBChB, MRCP(gastro), MSc, MA, FRCP; Steven McCann2 MSc, FRCPath
1Betsi Cadwaladr Health Board, Glan Clwyd Hospital, Rhyl, Denbighshire, Wales, UK
2Stockport NHS Foundation Trust, Stockport, Cheshire, UK

*Corresponding author
E-mail: Ben.palmer@wales.nhs.uk

https://clinlabint.com/wp-content/uploads/sites/2/2020/08/C324_McCann_fig1_crop.jpg 1000 829 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:31Calprotectin use in primary care. Are testing criteria being followed?
BLPic

Fundamental research: Europe is not bridging the gap with the US

, 26 August 2020/in Featured Articles /by 3wmedia

October 2nd marked the 100th anniversary of the birth of Christian de Duve, Nobel Prize-winning Belgian cytologist and biochemist who discovered two cell organelles, lysosome (in 1955) and peroxisome (in 1966), for which he shared the 1974 Nobel Prize in Physiology or Medicine with fellow Belgian Albert Claude and Romanian-born American George Palade. The award recognized their ‘discoveries concerning the structural and functional organization of the cell’. Albert Claude pioneered the application of electron microscopy for the study of animal cells and developed the technique of differential centrifugation during the 1930’s and 40’s at the Rockefeller Institute while George Palade discovered what are now known as ribosomes, further demonstrating their role in protein synthesis and describing the protein secretory process. De Duve’s work was a direct consequence of Claude’s contributions in the chemical fractionation of cell components and his discovery of lysosomes laid the groundwork for the understanding of the mechanisms of several metabolic disorders such as Pompe disease and Gaucher disease. These rare diseases are grouped together under the name of Lysosomal Storage Disorders (LSDs), a group of approximately 50 inherited metabolic disorders resulting from defects in lysosomal function which affect mostly children who often die at a young and unpredictable age.

Although there are currently no cures for LSDs (despite the promises of gene therapy) and treatment is mostly symptomatic, enzyme replacement therapy (ERT) has been shown to minimize symptoms and prevent permanent organ damage. Early detection is therefore critical to allow treatment and control of these rare disorders in newborns and depends on the availability of accurate screening tests. The US FDA has recently cleared a neonatal screening test for Mucopolysaccharidosis Type 1 (MPS I), Pompe disease, Gaucher disease and Fabry disease through the de novo premarket review pathway. The Seeker system (which is also CE-marked and manufactured by Baebies, Durham, NC, USA) consists of a reagent kit and instrument for measuring the activity of enzymes associated with any of the four LSDs in dried blood samples collected from the prick of a newborn’s heel 24 to 48 hours after birth.
None of these developments would be possible without advances in fundamental research and, unfortunately, Europe is still lagging behind the US and possibly China in this respect. In Belgium, a major research funding organization (the FNRS, founded in 1928) recently announced it could only finance 20% of grant requests although 60% were qualified as exceptional or excellent. It is high time for European governments and institutions to heed the late Professor de Duve’s words: ‘To overcome disease one must first understand it’.

https://clinlabint.com/wp-content/uploads/sites/2/2020/08/BLPic.jpg 313 203 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:43Fundamental research: Europe is not bridging the gap with the US
27452 Randox Reagents Full Page Advert CLI Nov 2017 Issue

Adiponectin – clinical diagnostic biomarker for metabolic risk assessment

, 26 August 2020/in Featured Articles /by 3wmedia
https://clinlabint.com/wp-content/uploads/sites/2/2020/08/27452-Randox-Reagents-Full-Page-Advert-CLI-Nov-2017-Issue.jpg 1500 1066 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:41:022021-01-08 11:34:34Adiponectin – clinical diagnostic biomarker for metabolic risk assessment
Page 119 of 144«‹117118119120121›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription